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Abstract 

The present report summarizes the 4 year experimental and theoretical research program 

conducted by the Fracture Research Laboratory under AFOSR support and devoted to various 

aspects of materials brittle fracture and aging*'. The report includes two parts - Part 1. "Two 

Parameter Crack Layer Model: Equilibrium, Evolution, Stability" and Part 2. "Aging Phenomena 

and the Intrinsic Material Geometry". 

In the first part, a thermodynamic foundation of the crack layer (CL) kinetic model is given 

and various applications are discussed. Motion of the CL causes elastic energy release from the 

matrix and remote load as well as energy consumption due to formation of the process zone (PZ) 

and new crack surfaces. The thermodynamic force for crack or PZ advance is defined as the 

difference between the rate of the potential energy release and the rate of the energy dissipation; 

crack or PZ advance being possible only if the thermodynamic force is positive. The material 

degradation process taking place within the PZ is accounted for by a reduction of the specific 

fracture (Griffith) energy in time. The kinetic equations governing the process of CL growth are 

formulated in the form of relations between the rates of crack and PZ extensions and conjugated 

thermodynamic forces. Numerical solution of the non-linear equations reveals two modes of CL 

growth - continuous (the CL grows monotonously) and discontinuous (the process is a sequence 

of CL stationary states and transitions from one state to another). Stability analysis shows that 

processes of CL advance including crack growth (particularly, the transitions mentioned) are 

unstable. According to observations, in a realistic range of load and temperature, subcritical CL 

growth progresses in a discontinuous fashion. The modeling of this process leads to the lifetime- 

load-temperature relation which agrees well with that obtained experimentally. 

In the second part, a new variational approach to the derivation of constitutive equations for 

material aging is presented. A 4D material metric tensor is introduced as an age parameter. This 

tensor represents an evolution of elastic properties as well as the irreversible deformations of the 

material. The equations governing evolution of the material metric tensor with the respective 

balance equations are derived and analyzed. The proposed equations are illustrated by examples. 

*) These works have been reported previously: 
1. A new method of lifetime prediction for brittle fracture of engineering thermoplastics, 1994. 
2. A new experimental technique for modeling of crack and process zone propagation in engineering 

thermoplastics, 1995. 
3. Crack and process zone behavior in a vicinity of inclusions, 1995. 
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1. Introduction 

The crack layer concept [1, 2] to model subcritical crack growth is based on the assertion 

that the crack as a fracture object has to be considered jointly with a zone of damaged material that 

surrounds the crack and grows with it. The presence of such a zone is treated as a natural 

characteristic of any cracked body since the zone is observed in all engineering materials - metal, 

polymer, ceramic, composite. The crack and the zone further referred to as the process zone (PZ) 

form an entire system - the crack layer (CL). Propagation of the CL is a result of interaction 

between the crack and PZ within the CL and between the CL and the surrounding body called for 

brevity the matrix. Therefore the fracture process is affected by behavior of both the matrix and 

PZ materials. The given CL definition calls for a detailed information regarding properties of the 

matrix and PZ materials to model fracture evolution under particular loading and temperature 

conditions. The present report is concerned with development and application of the CL concept 

for the case when CL behavior is characterized by two parameters - crack and PZ lengths. 

Subcritical crack growth leading to long-term brittle fracture is of considerable practical 

importance. The crack which causes the fracture is usually generated by a preexisting defect. At 

room temperature crack initiation and propagation occur at relatively low stresses and prove to be 

the major reason for failures of structural components under normal service conditions. The 

period of time required for the crack to be initiated and to propagate slowly up to a sudden onset of 
crack instability is called the lifetime, or the time to failure and denoted by tr.   Fundamental 

understanding and respective modeling of the mechanism governing crack initiation and growth 

creates a theoretical basis for reasonable prediction of the material lifetime. 

The validity of CL model is examined in application to engineering thermoplastics because 

all the data required are readily available for both constant and cyclic loads [3-24]. The 

observations of slow crack growth reported allow a complete characterization of the CL model 

and comparison of its predictions with the results obtained experimentally. 

According to [15], the PZ is formed ahead of the crack tip almost immediately upon loading 

and then extends together with the growing crack preceding its tip. Formation of the PZ can be 

treated as a material response to the state of high level stresses occurring in front of the crack tip 

and having the shape of nearly hydrostatic tension. The stress field produces microvoiding of the 

original material and subsequent stretching of the voided material. As a result, the PZ appears 

either as a region of craze fibrils, i.e. of the material strongly oriented towards the direction 

perpendicular to the crack plane and disconnected within the plane of crack extension, or in the 



shape of a region subjected to large shear yielding. As stated above, the PZ material is 

conventionally considered similar to those of the drawn (necked) one. There are convincing 

evidences of a crucial influence of time-dependent properties of the PZ material, such as 

disentanglement and creep of the craze fibrils, on the rate of subcritical crack growth and the 

lifetime of polymers [10, 23, 24]. Modeling of the PZ from the continuum mechanics standpoint, 

particularly evaluation of the PZ length, is usually based on the Dugdale-Barenblatt (DB) model 

[25, 26]. However, as follows from more accurate analysis [22, 27], the length of the PZ 

observed turns out to be significantly smaller than that predicted by the DB model. 

As experiments show, subcritical crack growth may evolve as a continuous (smooth) 

process or discontinuous (step-wise) one. Discontinuous crack growth in polymers under fatigue 

conditions has been reported rather long ago [4], but only recently [19] this process has been 

observed under constant load. In accordance with the latter, this manner of crack growth is 

explained by interaction of the two processes: degradation of the PZ material and crack extension 

into the PZ. The crack remains arrested while the PZ material is strong enough, and starts 

growing as soon as this material sufficiently weakens. Crack advance continuous up to the instant 

when it reaches the material that are too firm to be broken. Discontinuous crack growth is 

considered a general phenomenon which tends to become unobservable if the level of stresses 

decreases and/or the rate of degradation increases. 

Description of the crack kinetics is usually based on the assumption that the stress-strains 

field in a small vicinity of the crack tip completely defines the conditions of crack initiation and 

growth. This means, in particular, that the rate of crack growth (in experiments [15] the rate of 

crack tip opening displacement is usually measured) only depends on such fracture parameters as 

stress intensity factor K or /-integral or others like that. Observations [6, 8, 13, 17-19] result in 

an approximate determination of the crack growth rate under constant load as a power function of 

the stress intensity factor K, i.e. the rate of the crack length or the notch tip opening displacement, 

i'or 8, is defined to be proportional to K" where n is a material constant. According to [28], n 

varies from 3 to 5 depending on the particular chemical structure of the polymer. The empirical 

relations mentioned has been established for the simplest conditions of crack propagation: the 

specimen material is homogeneous and the crack trajectory is straight line. Study of the case when 

the specimen contained an asymmetric inclusion and so, the crack trajectory was curved [29], has 

led to the conclusion that the crack kinetics could not be fully determined by the only parameters of 

the crack tip mentioned above and so, some additional characteristics of the process should be 

involved to reflect presence of the PZ and its effect on the direction and rate of crack growth. 



From the viewpoint of lifetime prediction, the most important experimental result is the 

establishment of relations between the lifetime, applied load and temperature. Data about the 

lifetime of polymer structures at various levels of load and temperature have been reported for 

internally pressurized pipes [6] and for tensile single-edge notched (SEN) specimens [17, 18]. For 

definite sizes of specimen from a given material and for the particular load type (tension, three- 

point bending and so on), the lifetime under constant load and fixed temperature depends only on 
stress level a, namely tj °=<x~a. In case [6] a  signifies the hoop stress in a pipe, and in case 

[17, 18] the applied stress; a is a material constant that slightly depends or none at all on 

temperature and varies approximately from 2.5 to 5.0 for different materials. It has been 

demonstrated that a certain treatment of the lifetime-stress relation obtained in short-term fracture 

tests at high temperatures allows a reasonable estimation of the lifetime-stress relation for long- 

term processes at room temperature [16-18, 21]. 

The three approaches to modeling of subcritical crack growth in polymers under constant 

load can be pointed out. The first assumes that kinetics of the process is uniquely defined by time- 

dependent properties of the matrix material. According to the most detailed theory of the kind 

[30], the crack propagates due to viscoelastic deformation of the matrix material. The second 

approach links crack growth with the time-dependent processes developing within the PZ material 

[9, 10, 19]. And, finally, the third approach is based on the CL concept [1, 2]. Based on the 

analysis of CL motion from the standpoint of irreversible thermodynamics, a complete 

specification for a solution of the general problem on the CL kinetics has been obtained. This 

approach applied for the case when the CL can be defined as a two-parameter system [22, 27,31- 

34] leads to a modeling of various phenomena observed in thermoplastics, particularly 

discontinuous crack growth. In the framework of the third approach, it also should be mentioned 

the kinetic model [35] with a quasi-empirical condition of discontinuous crack propagation. 

The present report is devoted to a thermodynamically consistent characterization of the 

simplified (two-parameter) CL kinetic model. The simplification of the model results from the 

observations that the PZ in thermoplastics occurs as a thin strip extending the crack, so that the CL 

can be geometrically determined by the crack and CL lengths only. Motion of the CL causes 

elastic energy release from the matrix and energy expenses due to formation of the PZ and new 

crack surfaces. Thermodynamic force for crack or PZ advance is defined as the difference 

between the rate of respective potential energy release and the rate of energy expenditure; crack or 

PZ advance being possible if the thermodynamic force is positive. Focusing only on modeling of 

CL growth and on lifetime assessment and taking account of the fact that the matrix releases only 

elastic energy, viscoelasticity of the matrix is admissible to be ignored. The degradation of the PZ 



material is described as a reduction of the specific energy of crack extension in time. The kinetic 

equations governing the process of CL growth are formulated as relations linking the rates of crack 

and PZ extensions with conjugated thermodynamic forces. Numerical solution of the equations, 

non-linear because of the above constraints on crack and PZ advances, reveals two modes of CL 

growth under constant load: continuous (the CL grows all the time of the process) and 

discontinuous (the CL growth is a sequence of its stationary states and transitions from one state to 

another). Stability analysis shows that any process of CL advance including crack growth is 

unstable. Particularly, this means instability of the transitions from one CL stationary state to 

another in a discontinuous process. As examples of CL kinetic behavior, the two additional 

loading conditions are analyzed: first, the edges of a finite SEN plate are displaced with a 

prescribed rate (the ramp test if the rate is constant), and second, a dipole with a given rate of 

growth is applied to the crack boundaries in an infinite plate. 

-.4?' 



2. Process zone formation. Energy balance 

Let a two-dimensional cracked body (Fig. la) be subjected to a remote load p = {px, p } 

on bounding contour Sp inducing a stress-strain state of the opening mode (mode I) in a vicinity 

of the crack. The deformation caused by the remote load is assumed small and the material 

linearly elastic, so that the problem on the body in question is completely linear. As a response to 

the stress singularity at the crack tip predicted by the solution of the above linear problem, a region 

of the material ahead of the crack tip is transformed so that the stresses within it diminish. In case 

matris 

process 
zone 

(b) 

Figure 1. PZ formation: (a) before and (b) after the PZ occurs 

of thermoplastics, this region called in previous section the process zone (PZ) usually appears in 

the shape of a thin strip as shown in Fig. la by contour Sz. Mechanism of PZ formation contains 

at least two stages: first cavitation within the original material, and second stretching or shearing of 

the cavitated material. As a result, the continuum under consideration is divided into two parts of 
different materials: the PZ (inside contour Sz) and the rest of the body (outside the contour) 

consisting of the original material and called previously the matrix (Fig. lb). The additional matrix 

deformation produced by the PZ appearance is supposed small as before and so, the problem on 
the matrix stays linear. 

Formation of the PZ can be described in terms of forces and displacements as follows. 
Because the region enveloped by contour Sz is narrow in the direction of y-axis, the values of 

#• 



traction and displacement on the contour can be understood as stress component a = ayy and 

contour opening 8 = 2u . The state of the part inside Sz is treated as homogeneous in the y-axis 

direction and contour S, is substituted with its projection Lz on x-axis. Let at the beginning of the 

process, i.e. at the instant of cavities nucleation, the traction on Lz and contour opening have values 

a°m and 8° respectively. At this point, the equality between the tractions acting on the external and 

internal parts of the body along L. is violated: the traction applied to the external part (to the 
matrix) do not change and keeps value (T^, but that for the internal part drops down to a certain 

value a°z (< (7° ). Nucleation of cavities leaves displacement compatibility between the two parts 

of the body valid, so that equalities <5° = 8Z = 8° take place for any point of Lz. The opening 8 of 

Sz due to development of the cavities and subsequent stretching of the cavitated material with 

preservation of the mentioned compatibility gives rise to changes in the contour tractions. The 
value of the traction acting on the matrix, am, decreases obeying the elasticity law of the matrix, 

whereas that for the traction exerted on the cavitated region, av varies in accordance with the 

stress-strain relation of the material subjected to cavitation and stretching. This non-balanced 
process comes to an equilibrium when the tractions on the both sides of Sz get equal to each other, 
i.e. <7m = az=a* at all points within  Lz.    The respective equilibrium value of opening 

displacement 8 is denoted by 8 . 

6dr £ 

Figure 2. Diagram a-e of cold drawing: (a) observed, (b) simplified 

For complete specification of the problem on PZ formation, a stress-strain relation 

governing PZ behavior during this process has to be known. For polymers, it is widely accepted 

that the PZ material is identical with that obtained as a result of cold drawing of the original 

10 



material. This allows the characterization of the PZ at any point in terms of the diagram 
connecting engineering stress (7 and strain £ (Fig. 2a). By <Jy and Gdr one implies the yield and 

drawing stresses, and by ey and edr the strains before and after drawing respectively. Segment 

OA describes elastic deformation and AB drawing, the transition from undrawn state to drawn 

one, since it results in a fall of stress <7, being unstable. Further, for simplicity, the elastic part of 
diagram a vs. e is neglected, ey = 0 (Fig. 2b), and the strain after drawing can be determined as 

edr = Xn - 1 where Xn is the natural draw ratio. Moreover, it is assumed that during PZ 

formation each point of the region within L. goes through the complete transformation from the 

undrawn state to the drawn one, i.e. any PZ fibril is subjected to the drawing stress and 
experiences deformation with the natural draw ratio, i.e. a = adr and e = Xn -1. 

■^^ 

1 

] 

>        Cm 

k 
Lz 

(a) 

Figure 3. Matrix unloading: (a) initial and (b) additional tractions on L. 

According to the above, the opening of Lz at the instant of cavities nucleation has to be 

taken to equal zero, i.e. 5° = 0. Let, for definiteness, opening 8 due to PZ formation and matrix 

unloading change as 5 = ad where a grows from 0 to 1. This process, because of matrix linear 

elasticity, can be decomposed into the two stages: first removal of the part of the body within (Fig. 
3a) and second application of traction Aa = a (- <T° + adr) to the cut boundaries (Fig. 3b), so 

that the total traction changes as am = (1 - a) aQ
m + a adr. The matrix behavior can be displayed 

by straight line Cm(<5) in Fig. 4a. The figure also illustrates the PZ behavior during its formation 

by curve crz(8) which is analogous to curve cr(e) in Fig. 2b. As a result of PZ formation, the 

stresses in a vicinity of the crack tip are released as shown in Fig. 4b. 

11 



Consider the energy balance of PZ formation, admitting the process to be isothermal and 

the remote load prescribed. Under conditions indicated, the relevant thermodynamic potential is 

the Gibbs energy G. 

Since the elastic deformation of the material within L, is disregarded, all energy changes 

associated with cavitation fall out from consideration. Stretching or shearing of the cavitated 

material results in the following change of G: 

AG = AFm+Fz-Wp (1) 

(a) 
5*     5' 

Figure 4. Stress evolution ahead of crack tip: (a) diagrams am and at vs. 8, 

(b) stress release 

where AFm and Fz are change in strain energy of the matrix and the "deformation potential" of the 

cavitated region, and Wp is the work done by the remote load on the displacement of contour Sp 

due to the processes considered. The deformation potential is equal to the work of traction a z on 

opening 8 and is written in the form 

A„-l Fz= Wz=\lh{\A
Q"-

lade)dx. (2) 

Here by lz one implies the length of Lz and by h the width of the original material region 

transformed into the PZ; the opening displacement within Lz and PZ strain are linked by 8 = he. 

**>• 
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In the right side of (1), the first and third terms taken together signify the change in the total 

potential energy of the matrix and the apparatus maintaining the remote load, 

Anm = AFm - Wp, (3) 

and - ATlm (> 0) is the energy release from the matrix and remote load. Now, equation (1) can 

be rewritten as 

AG = Anm + Fz. (4) 

One more expression for (1) results from the fact that the process in question is in equilibrium and 

so, the change of the strain energy of the matrix equals the work done by all external forces. This 

means that 

AFm = Wp-Wm (5) 

where - Wm is the work done by traction am on opening 8 of Lz: 

Wm=-\l{fQamd5)dx; (6) 

minus indicates the fact that traction a m and opening displacement 8 have the opposite directions. 

Equations (3) and (5) yield ATIm = - Wm and with the first of (2) leads to a new representation 

of equation (1): 

AG = -Wm + Wz. (7) 

This allows a graphical interpretation of energy balance as shown in Fig. 4a. Namely, the areas of 
the rectilinear and curvilinear trapezoids under lines (Tm(8) and crz(8) represent the energy release 
from the matrix and remote load, -ATIm, and the change in the PZ deformation potential, AFZ, 

respectively, so that the shaded area in Fig. 4a corresponds to the negative of (1). If a PZ size is 
fixed, then AG as a functional of 8 gains a minimum value for the equilibrium opening 8 , i.e. 

AG* = AG[8*] < AG[8]. (8) 

13 
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Further, the value AG* of AG only is used and superscript * therefore omitted. 

According to the second law of 

thermodynamics, the PZ may occur only if 

-AG > 0, i.e. the energy release from the 

matrix and remote load due to PZ formation 

is greater than the respective energy 

expenditure within the PZ (the area hatched 

in Fig. 4a is "positive"). It should be 

emphasized that the energy balance is 

indifferent to "contents" of change (2) in the 

deformation potential of the PZ during its 

formation, i.e. the balance would be the same 

no matter whether the PZ completely 

accumulates the energy received from the 

matrix, or it dissipates this energy as heat in 

the surroundings, or both processes take 

place. For its meaning, AG is a functional 

of the domain of the original material 

transformed into the PZ. 

Since the PZ has the shape of a thin strip, its opening displacement as well as the opening 

displacement of the crack can be approximated by the opening displacement of the slit extending 

the crack over the PZ length /.. This allows the geometrical characterization of the CL by the two 

parameters - the crack and CL lengths, / and L = I + lz (Fig. 5). 
The change in the total energy of the matrix and remote load, AIJm, does not depend on 

the path of matrix unloading and under the way chosen above is evaluated as 

Figure 5. Approximation of matrix state 

AHm = -%{g[{l-a}o°m + cuxdr]S'da]dx = - {^o'dx - \ fa/dx, (9) 

where /0 is the crack length at the instant under consideration. Quantity -AI7m corresponds to the 

trapezoid area under line crm(<5) in Fig. 4a. It can be shown that (Appendix A) 

\ym5*dx = \L
Qcp8'dx + 2nQ (10) 

14 



where ap stands for the negative of stress component <y produced by the remote load in the 

uncracked body along jc-axis, 8* within [0, /0] is understood the crack opening displacement after 

PZ formation, and by IJ0 one implies the change in the total energy of the matrix and remote load 

due to transition from the uncracked body to the cracked one. Substituting (10) into (9), the 

change in the total energy as a result of PZ formation gains the resultant expression: 

Anm = -nQ-±\L
Qop8*dx-^Od8*dx, (11) 

the energy release from the matrix and remote load due to PZ formation being equal to the 

negative of (11). It makes sense to notice that the presence of the PZ reduces the energy release. It 
is seen from the comparison of ATIm and AIJ'm for the cases with and without a PZ, respectively. 

The latter is determined by the expression 

AII'm = -nQ-±fc<rp8'dx (12) 

in which 8' is the opening displacement due to crack extension from x = l0 to x = L. Quantity 

-AWm is illustrated by the area of the triangle under line am{8) in Fig. 4a. 

If behavior of the PZ material had been "perfectly plastic" with stress adr (see Fig. 4a, 

dashed line crz(S) = <Jdr), then the deformation potential would have been determined by 

F2= \l<Jdr8*dx. (13) 

Hence with (4) and (11) there follows for the respective change in the Gibbs potential: 

AG = -I70- \iapSTdx +l-\l<Jdr8-dx. (14) 

Quantities Fz and -AG are presented by the areas respectively of the rectangle under line G'Z{8) 

and the triangle between lines Gm(8) and a'z{8) in Fig. 4a. Since the real PZ material is formed 

as a result of drawing, according to Fig. 2b 

15 



ft* ode = (l + T])odr£dr (15) 

where by definition 

n = \l
ircde-odredr (i6) 

Gdr £dr 

and 77 > 0. As accepted above, coefficient 77 characterizing the "shape" of the stress-strain 

relation for the PZ material, has the same value for all points of the PZ, so that 

Fz=(l + T])fQhodr£drdx. (17) 

Curve <JZ(Ö) in Fig. 4a depicts PZ behavior, and the area of the trapezoid under this curve gives 

quantity Fz. According to the assumption accepted above, the width increment of the original 

material strip due to PZ formation is equal to the opening displacement of contour Sz, i.e. 
hedr = 8*, and equation (17) becomes 

Fz={\ + n)\io<Jdr8*dx. (18) 

Equations (4), (11) and (18) lead to the following expression for the change in the Gibbs potential 

due to PZ formation: 

AG = -nQ--^oD5*dx --fto 5*dx + (\ + 7])tc S*dx. U        2   °     P 2   '"     dr -"o     dr 
(19) 

Equation (19) can be rewritten as 

AG = AG+Z (20) 

where AG is the change of the Gibbs potential in case of the perfectly plastic PZ material 

previously determined by (14), and 

Z=7]frc   8*dx (21) 
J<0    dr 

,■*?■ 
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is the energy consumed within the PZ due to its overloading during formation (see Figs. 2b and 

4a). 

There exists a simple link between the bodies with the PZ and with the Dugdale-Barenblatt 

cohesive zone (CZ). The CZ is a crack extension, boundaries of which interact between each other 
with the traction uniformly distributed and equal, say, to adr (the real and extended cracks 

sometimes are called the physical and effective cracks respectively). In case of the CZ, the 

negative of energy release from the matrix is given by (11) like that for the PZ, and the traction 

potential is determined by (13) like that for the perfectly plastic PZ material. Thus, the change in 

the Gibbs potential due to CZ formation is written as (14). However, the meaning of quantity Fz 

involved in the energy balance for the CZ essentially differs from that for the perfectly plastic PZ. 

Namely, quantity (13) for the PZ is the deformation potential of the material filled the space 
between the matrix boundary within L,, whereas for the CZ it means the potential of external 

forces acting on the matrix boundaries along Lz. It is also obvious that energy balance (20) for the 

PZ can formally be reduced to that for the CZ by setting r\ = 0. 

,«?' 
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3. Degradation of PZ material 

Experimental studies on the materials obtained by cold drawing of polymers show that 

such materials under the loading equivalent to that in a tensile specimen at drawing experience 

creep and/or long-term rupture. For example, there are data regarding drawn material degradation 

for some engineering thermoplastics [9-11, 23, 24]. Similar processes can be reasonably assumed 

to occur within the PZ material. The present paper is only dealing with long-term rupture of the 

PZ material that is most likely a thermally activated process and can be described by the fluctuation 

theory of fracture [36]. The approach employed further is based on an analogy between the 

processes of phase transition [37, 38] and fracture and can be described as follows. 

Fracture of the PZ material is associated with the entropy production within the process 

zone under tensile stress Xn a^. Let s' be the specific (per unit area of the crack surface) entropy 

production in the act of rupture at a given PZ point x and time t, and sQ be a critical value of 

specific entropy, i.e. the value at which material failure takes place, all indicated values being 

counted from a certain reference level. The critical increment of entropy density then can be 

written in the form 

As(x,t)= sQ-sl(x,t) (22) 

where As signifies the entropy barrier for the material failure at point x and time t. In (22), sl 

increases from zero to s0 and As diminishes from s0 to zero with time. In parallel, introduce the 

specific (per uni: area of the crack surface) fracture energy J absorbed on new crack surfaces due 

to PZ rupture. The irreversible-entropy and fracture energy are postulated to be connected by 

*'(*,*)= jY(x,t).< (23) 

where T is temperature in degrees Kelvin. From (22) and (23), the balance for the fracture energy 

follows: 

Ay(x,t) = y0 - y(x,t). (24) 

&■■ 
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During the process of long-term rupture, y increases from zero to y0 and Ay decreases from 

Jo to zero. Now, y0 can be treated as the energy needed for the process zone to rupture at the 

initial moment, and Ay as the energy required for that at a current moment. Thus, the long-term 

rupture is characterized by descent of the material fracture energy and is, in essence, a process of 

material degradation. 

Decrease of the energy reserve Ay with time is described by the simplest linear equation 

—Ay=-rAy (25) 
at 

where r is a phenomenological coefficient equal to the reverse value of the relaxation time tr for 
the rupture process, r = l/tr. Integrating (25) with the initial condition Ay = y0 at t = tx, 

where tx is the time of the process zone formation at point tx, the quantity Ay is obtained as the 

function of time 

Ay(x,t) = y0exp[-r(t-tx)]. (26) 

Correspondingly, the energy absorbed due to fracture of the process zone material is 

Y(x,t) = y0{l-exp[-r(t-tx)}}. (27) 

The above coefficient r, or relaxation time tr is nothing but a time scale for the process of 

material degradation and is a certain function of temperature. For example, the time scale can be 

defined in the form [36] 

t   -  -  -   t   rrn^°~ X<Tdr nZ\ 'r -       ~   r0 exP ^Z, (28) 

where t0, ßb anc* X signify parameters of a given material: a characteristic time, an activation 

energy for time-temperature dependent processes and the coefficient that reflects the material 

microstructure respectively, R stands for the universal gas constant and T the temperature in 
degrees Kelvin. The quantity y0 is also temperature dependent and, for general reasons, should be 

considered as a decreasing function of temperature. 

>#■ 
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4. Energy balance for CL propagation 

Propagation of the CL implies two events occurring in parallel - PZ advancement and crack 

lengthening. The first means that the PZ captures a new region of the matrix located ahead of its 

tip, and the second, the crack cuts off the PZ from its root. So, energy balance of CL growth 

should include the energy expenses not only due to PZ formation, but also due to formation of 

new boundaries of the crack. Let at a current instant the lengths of the crack and CL be equal to / 

and L respectively. For its meaning the total potential energy of the matrix and remote load is 

determined as a function of current values of these lengths. This energy, when counted from that 

for the uncracked body, is evaluated according to (11) by 

n = n0 + Anm = - ^fasdx -^ajdx. (29) 

Here IJQ and ATIm stand for the changes in the total potential energy due to formation of the 

current crack and PZ respectively, and 8 the CL opening in the state considered. The PZ 

deformation potential is determined in the form following from (17): 

F^il + rD^Sdx. (30) 

Energy balance expressed by (4), (13), (14), (20) and (29) should be added by the term reflecting 

the change in energy due to formation of new crack surfaces: 

G = n + Fz + r= p + z+r. (3i) 

Here the Gibbs potential is counted from that for the uncracked body, and P = 17 + Fz and Z are 

the Gibbs potential due to formation of a current CL with perfectly plastic PZ and the energy of PZ 

overloading respectively . The new quantity T is the energy accumulated on the boundaries of the 
crack due to its advance and determined as follows. Let tx be the time of PZ formation at a point 

x (l< x< L), i.e. the instant when the CL tip goes through this point, L{tx)= x. At a current 

time t(>tx), the energy y accumulated within the PZ due to its rupture is postulated to be 

distributed along x axis such that 
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7 = 

7o> /0<x</(f); 
y(x,t),   l(t) < x < L(f); 

0, L(t) < x 

(32) 

where y(x, t) is given by (27). Proceeding from (32), the energy T accumulated on the crack 

boundaries is determined as 

r = 2{y0(l-lQ) + tfy(x,t)dx]. (33) 

By virtue of (32) 

T(/, L+AL, t)- r(l, L, t) =  0, (34) 

that is, the partial derivative of function (32) with respect to L is identically equal to zero. 

The balance of the entropy production due to CL growth is given by the expression 

dt dl        dL dt K   } 

in which the dote signifies a derivative with respect to time.  The couples /, L and 

X --*£_ dG 
Xl~     dl'   Xl-"dl (36) 

play respectively the roles of the thermodynamic fluxes and forces [39] for crack lengthening and 

CL advancement. The last term in the right side of (35) which is, according to (27) and (33), 

determined as 

dG 
dt 

:L . 
= 2 I y(x,t)dt (37) 

signifies the contribution in the entropy production of PZ material degradation. 
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5. CL as a two parameter system with unilateral constraints 

According to the assumption of section 2, the region of the original material that is 
transformed into the PZ (enclosed by contour Sz in Fig. la) has the shape of a thin strip, and the 

matrix state is approximated by the state of the cracked body with appropriate sizes of the slit and 

traction distribution along the slit boundary (see Fig. 5). This approximation, if no special 

limitations are introduced, leads to a CL tip singularity, that, however, is not treated as a real 

characteristic of the stress-strain field and only used for evaluation of the energy sinks at crack and 

PZ extensions. 

It is convenient to divide the thermodynamic forces defined by (36) into the parts 

corresponding to the second of (31): 

where 

and 

Xt =Pt +Zt-rh   XL = PL + ZL (38) 

^--!rz'--ü: (40> 
for the second of (38) the identity d T/d L = 0 resulting from (34) is used. The first parts of 

(39) and (40) are evaluated as (Appendix B) 

P, = c7dr(VU   PL = ^(Kp+Kz)
2 (41) 

where Sp and 8Z are the crack tip opening displacements (CTODs) and K and Kz the stress 

intensity factors (SIFs) due to, respectively, the remote load p and traction adr on the boundary 

of the matrix with the PZ (see Fig. 5 from which it is seen that Sz and Kz are negative). All these 

characteristics of the stress-strain field are functions of both lengths, / and L. Proceeding from 

(21), the second parts of (39) and (40) can be shown to take in the form (see Appendix B) 

Z/ = 770-^5,,   ZL=^-Kz(Kp+Kz). (42) 
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And finally, as it follows from (26), (27) and (33), 

rt=2Ay (43) 

where Ay stands for the energy reserve to PZ fracture ahead of the crack tip. It should be noted 

that quantity (43) and the first of (38) depends not only on the crack and CL lengths, but also 

explicitly on time because, as follows from (26), A y is a function of time, 

Ay(l,t) = y0exp[-r(t-tl)]. (44) 

The second law of thermodynamics, T(dSl /dt)>0, written separately for advance of the 

CL and degradation of the PZ material yields the inequalities 

riC 
Xtl + XLL>0,   - ~>Q (45) 

at 

the second of which, in view of (27) and (37), is apparently satisfied.  In the first of (43) the 
equality takes place only for a stationary state of the CL, i.e. only if / = 0 and L = 0. 

The crack and PZ are not healed so that 

/ > 0,   L > 0. (46) 

These inequalities, in turn, impose certain limitations on relations between the thermodynamic 

fluxes and forces. Let, for simplicity, these relations be formulated by 

/* = <?)[X/(/,L,r)]>   L = y,[XL(l,L)], (47) 

that is, each of the fluxes is connected only with its conjugated force. As seen from (47), the 

indicated separation of the fluxes and forces does not lead to a separation of the constitutive 

variables / and L. By virtue of (45) and for the physical meaning of the fluxes and forces the 
functions (p and y/ in (47) should possess the following properties: if Xl < 0 and XL < 0, then 

(p = 0 and y/ = 0 so that / = 0 and L = 0 (the CL is arrested); for Xt > 0 and XL > 0, (p and 

\jf are increasing functions of Xt and XL respectively (the CL grows). 

.*?• 
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The next condition to be satisfied, 

1<L, (48) 

is obvious because the difference L -1 is the PZ length. One more limitation imposed on the CL 

length is given in the next section. 
Thus, the process in question is characterized by kinetic equations with respect to two 

constitutive variables which, at the beginning of the process, are satisfied certain initial conditions 

and, during the entire process, obey limitations in the shape of inequalities. Thus, the CL growing 

through the matrix is a system with two degrees of freedom with unilateral constraints. 
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6. Uniform tension. CL equilibrium and stability 

The remote load to be mainly regarded in this paper (exept section 14) is such that the 
stress-strain state of the uncracked body is a uniform uniaxial tension towards y-axis, so that the 
stress ap is constant along x-axis. 

If material characteristics of the matrix and PZ and sizes of the matrix and crack are 

prescribed, then themodynamic force XL is a function of CL length L only. This length is called 

equilibrium if it satisfies the equation 

XL(l,L) = 0 (49) 

in which / is considered fixed. From (49) with the second of (41) and (42) it follows 

K„+(l + 2TI)K = 0,   KD+K,=0. (50) 

For the uniformly tensile remote load, the left sides of the first and second of (50), K{ and K2, 

vary with L at constant / as shown in Fig. 6a. Equation (49) then has two roots L^ and L^, and 

the second, greater of them coincides with the length of the effective crack in the DB model [25, 

26,.       K 

0 

A 
G (TI=0) 1 

V 2 *»_ s. 

s     \ 
/      1 / / * < 

G (rpO) 
s 

1     Li    L2 

(b) 
Figure 6. Stability of CL equilibrium: (a) SIFs vs. CL length, 

(b) profile of Gibbs' potential 
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It is easy to prove that the first equilibrium state, at L = Z^, is stable, whereas the second 

one, at L = L^, unstable. Indeed, the second equations of (36), (41) and (42) yield 

If 1=2^, then ^=0, dKxldL<Q, and K2>0 (see Fig. 6a), and the stability condition 

d2Gldl} > 0 is met. In the case of L=L1, analogous consideration results in the inequality 

d2 Gl d L2 < 0 which signifies instability. 

The profile of the Gibbs potential as a function of the CL length is depicted by the solid 

curve in Fig. 6b. When 77 becomes zero, the Gibbs potential G(L) for the general case of PZ 

material turns into the Gibbs potential G(L) for the perfectly plastic PZ, root L^ merges with root 

L2, and the shape of the energy profile is transformed into that indicated by the dashed curve. In 

view of the second parts of (36), (41) and (50), function G(L) at L = l^ = L^ has a stationary 

(inflection) point, not a minimum one. On the other hand, as Fig. 6a shows, at L > L^ the total 

SIF K2 becomes negative. From the physical standpoint, the inequality K2 < 0 is unacceptable 

because it means an overlapping of the PZ boundaries. With limitation L < L^ (see the shaded 

line in Fig. 6b) function G(L) at L = Lj = Z^ has a unilateral degenerate minimum. Hence there 

follows that the DB model possesses a (weak) stability with respect to advance of the effective 

crack tip. 
Thus, for each given crack length /, two equilibrium states of the CL with sizes Ly and Li 

(I4 < Li) can be pointed out, but only the first of them is stable. Further only Z^ will be called the 

CL equilibrium length for the given crack length /. The CL equilibrium length will be denoted by 
LeJl), or briefly Leq if this cannot cause a misunderstanding. A growth of the PZ beyond the 

range I <L < Leq is impossible because it would produce an increase in the Gibbs potential (see 

Fig. 6b). So, at every moment of CL growth 

L<Leq(l), (52) 

that is, the CL length cannot exeed the equilibrium value for the current crack length. 

&■ 
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7. Crack initiation. Stability of crack advance 

Let the remote load be uniform tensile and prescribed and CL have sizes lQ and 
L^Leq(lQ). If at a given instant r0 the thermodynamic force for crack advance is negative, 

X[(l0,L,t0)<0, the crack does not grow, / = 0. No limitations regarding behavior of the CL 

length L are imposed so that this length might either stay constant or increase, i.e. XL (70,1) < 0, 

L = 0 or XL (lQ, L) > 0, L > 0. If the CL is arrested, then the function formed by omitting -T, 

in the first of (38), 

Yt=Pl+Zh (53) 

does not change, and if the CL grows, the function increases (Fig. 7a where Yl as a function of L 
varies like graph p, (L) in Fig. Cb, Appendix C). 

lc Leq(lo)       to ti t 

<a> (b) 

Figure 7. Crack advance at fixed CL tip: (a) Yt as a function of L, 

(b) determinaion of initiation time 

At the same time, as a result of PZ material degradation the energy Ay required for the 

crack to advance and defined by (26) diminishes, and in both cases, L = 0 and L > 0, the 
thermodynamic force for crack advance, 

X/ = 1^-2AY(<0), (54) 
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approaches zero (Fig. 7b which assumes that L > 0 and Y{ grows with time). 

The time of crack initiation, t = tt, is determined by 

Xtllo.Utilti] = Yt [l0, L(tt)]-2 Ay (l^ti) = 0, (55) 

where in view of (52) L(tt) < Leq{lQ). From this instant, the force Xt becomes positive and the 

crack grows. At the "frozen" time, t = th or which is the same at the fixed CL length, L = L{tt), 

the onset of crack growth is stable or unstable depending on whether the value of derivative 

12. 
di1 

dx, 
di 

i _ dYL+2dA1 

di     di 
(56) 

taken at / = /0 and L = L{tt) is positive or negative respectively. Behavior of ^ as a function of / 

is shown in Fig. 8a (see graph Pt(l) in Fig. Ca, Appendix C). For its meaning derivative 

dAy/dl might be different from zero (but cannot be negative), however, further it is disregarded 

for simplicity. 

lo Leq(lo)      lo Leq(lo)   lo 

(a) (b) 

Figure 8. Thermodynamic forces: (a) Yt as a function of /, 

(b) XL as a function of L, (c) XL as a function of / 

At first, let the CL length at the initiation time be equilibrium, i.e. L(f,) = Leq(lo). 

Stability analysis then is reduced to examination of function Yl in a vicinity of point 1 = IQ.   If 
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77 = 0, dYt/dl>0 and crack tip advance is unstable.   Particularly, it means the DB model is 

unstable with respect to advance of the physical crack even under the condition that the effective 
crack is arrested. If 77 > 0, the sign of dYL/dl is not defined, the probability of that dYt/dl is 

negative and crack advance is stable growing with 77. 

In case when the length of the CL at the initiation time is smaller than the equilibrium one, 
L(tt) < Leg(/0), all reasoning can also be based on Fig. 8a with the only difference that the point 

of function 1/ examination should be shifted to the right. As seen, the less the PZ is developed by 

the initiation time, the higher the probability of stable onset of crack growth. 

29 



8. CL stability relative to crack and PZ advances 

In the two previous sectionsis, the stability analysis concerned with the cases when either 

the crack is arrested and the PZ freely grows (section 6), or conversely, when the PZ is in a 

stationary position and the crack is released (section 7). In the present considerations, the CL is 

assumed unrestricted with respect to both crack and PZ extensions. 

The remote load is supposed to be uniformly tensile and prescribed, and the CL attained 
sizes /0 and IQ by a given instant tQ. At first, let Xt (l0,LQ, tQ) > 0 and XL (/0, LQ) > 0, and there 

are no constraints regarding changes in both sizes of the crack and PZ, except the requirement for 

these changes to be positive. If 81 > 0 and 8L > 0 are various admissible deviations from the 

CL sizes, the second differential of the Gibbs potential is presented by 

52G = ^G ^2 + 2$G_S18L + ?-%SL2 (57) 
dl2 dldL dL2 

where all derivatives are calculated at / = /0 and L = LQ under time fixed. The CL state in 

question is regarded to be stable if 82 G > 0 at any admissible deviation 81 and SL, and unstable 

if there exists at least one deviation for which 8 G < 0. 
Let the PZ length LQ be as far from the equilibrium size Leq(lQ) that inequality 

<tSL =_^L = _^21>o (58) 
dl2 dl dl 

is met (see Fig. 8a). It means that lengths /0 and LQ are such that the portion of Fig. 8a bounded 

by points /0 and LQ contains only a descending segment of curve Yt(l).   Everywhere within 

Uo.A>] 

^ = -^>0 (59) 
dL2 dL 

(Fig. 8b where graph has the same shape like that for graph PL(L) in Fig. Cb, see Appendix C). 

The mixed derivatives of the Gibbs potential G satisfy the conditions 
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d_G = _ dXL = 

dldL~       dl 
££=  d^G 
dL      dLdl 

< 0 (60) 

(Figs. 7a and 8c: behavior of XL as a function of / is the same like that for PL{1) in Fig. Ca, see 

Appendix C). Proceeding from (56)-(58), stability analysis is reduced to a searching of real 

(positive) roots of the quadratic equation 

d2G   2 . ~ d2G        d2G 
dL2 •/r+2 

dldL 
ß + 

dl2 
= 0 (61) 

where jJ. = 8 L/Sl. In the case when 

d2Gd2G _(ÜG_}2S() 

dL1   dl' dldL 
(62) 

5L ^ coae of 
instability 

Figure 9. Positive quadrant of 
{51,5L} -plane and cone 

of instability 

equation (59) does have two real roots that 

merge to one if relation (60) is an equality. 
Let inequality (60) be satisfied, and p{ and 

p2 (Hi<p2) 
be the roots of (59). Then, 

there has to exist a region in the positive 
quadrant of {8l,SL} plane, namely cone 

/it < ß < fi2 (Fig. 9), such that for any its 

internal point 8 G < 0. Existence of such 

a cone signifies that the CL state is unstable. 

If 

££ilg_(^>0, (63) 
dL'   dl2 "dldL 

then equation (59) does not have real roots, 8 G > 0 everywhere within the positive quadrant of 

{81,8L}-plane, and the CL state is stable. 

The condition XL = 0 accepted above means that the CL length is smaller than the 
equilibrium one, LQ < Leq(l0).   In the case when LQ = Leq(lQ), variations 81 and 51 are 

bounded by the additional condition resulting from (50): 
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5L-—^-<5/<0 (64) 
dl 

where the derivative is taken at / = /0. This means the region of admissible deviations is 

contracted from the positive quadrant to the cone defined by inequalities 81 > 0 and (62). Now 

either inequality (56) remains valid, or it is substituted by 

W*° (65) 

(see the left portion of Fig. 8a where graph Yt(l) might have ascending segment). If (56) takes 

place, then the CL state is stable or unstable depending on whether the intersection of the cone of 

instability and the cone of admissible deviations is zero or not, respectively. If (65) is true, then the 

CL state is unstable because 8 G < 0 at 81 >0 and SL = 0 (see the previous section). 

As an example of stability analysis, an infinite matrix under uniform tensile remote load is 

considered. The PZ length is supposed to be essentially smaller than that for the equilibrium CL, 

or more precisely, 

L-l «Leq(l)-l, (66) 

This case is chosen to be examined proceeding from the two following reasons: first, if the CL 

with certain sizes is unstable in an infinite plate, it definitely will be unstable also in a finite plate, 

and second, if the CL with sizes / and L^ is unstable in some matrix, then in the same matrix the 

CL with sizes / and L^, where L^>L±, certainly will be unstable; in the compared cases, 

otherwise (material characteristics, load, etc.) is understood to be identical. 

For simplicity, it is accepted that 77 = 0. With notations 

- = cosO,   9 « 1, (67) 

the derivatives of the Gibbs potential can be shown to equal (Appendix D) 

(66) d2G _d2G _      d2G  _ 4adr<yp 

dl2      dÜ dldL        E6 
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This means that equation (59) has the two coinciding solution /^ = /J2 = 1, that is, the cone of 

instability degenerates to a single ray dividing the positive quadrant 81 > 0, SL > 0 in halves. The 

CL state is neutral with respect to deviation 81 = 8L, i.e. 82 G = 0 at /J. = 1, and stable with 

respect to all other deviations, i.e. 82 G > 0 at ß * 1 (ß > 0). Presence of one deviation at 

which the CL state is neutral is the indication that in any different case (a finite matrix and/or a 

bigger PZ) the cone of instability will be non-degenerate and a CL state unstable. 

The above example leads to the conclusion valid for the case of 77 = 0: if the crack is not 

arrested, the CL state is unstable, whatever it is. Thus, the CL can be in one of the two states: 

either the crack is arrested and the CL on the whole is stable, or the crack is released and the CL is 

unstable. This situation is similar to that taking place for the Griffith model in which the crack 

either does not grow at all, or grows in an unstable mode, i.e. dynamically. 
The case of 77 > 0 can also be analyzed based on behavior of quantities Yt and XL as 

functions of / and L (see Figs. 7a and 8). A state of the CL with 77 > 0 may be stable while it is 

unstable for 77 = 0 and the same otherwise. Moreover, even if a state of the CL is unstable, CL 

propagation is thinkable to develop in a quasi-static mode. This stems from the fact that PZ 

extension controlled by the respective kinetic equation (see the next section) goes on with a finite 

speed and in virtue ofthat, the mentioned instability cannot appear in the shape of catastrophe. 
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9. Kinetic equations, their numerical solution and dimensionless form 

The process of CL propagation like any non-equilibrium process allows the interpretation 

as a transition of the system from a non-equilibrium state into its equilibrium. Assuming that the 

deviation of each CL current state from the corresponding equilibrium one is not too large, 
relations (45) for CL growth can be taken in the form of linear approximation of the functions (p 

and y/ connecting the thermodynamic fluxes and forces. As a result, the kinetic equations 

governing CL growth are written as follows 

/'= £,*(/, L),   if Xt>0, 

L=JcLXL(l,L),   ifXL>0, 

and 

/ = o,   if* SO. 
L = 0,   if XL < 0. 

In (69) the phenomenological coefficients kt and kL that, from their physical meaning, have to be 

positive are functions of temperature and material characteristics, but in the framework of linear 

approach are considered independent of the thermodynamic fluxes and forces. Equations (69) and 

(70) should be supplemented by the initial conditions 

/(0)=/0,   1(0)=: Zo. (71) 

Evolution of the CL includes also the PZ material degradation that is described by (26): 

Ay(x,t) = 70 exp[-r(t-tx)]. (72) 

The thermodynamic fluxes obeys limitations (46), 

/>0,   L>0, (73) 

and the thermodynamic forces Xt and XL are determine by (38), (41) and (42). Besides, two 

more limitations have to be satisfied, namely (48) and (52): 
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l< L< Leq{l). (74) 

2 Ay 

Equations (69)-(72) and inequalities (73) and (74) give complete specification for a description of 

the CL kinetics. 

The formulated problem is non-linear and can be solved only numerically. The procedure 

of its numerical solution is implemented in the form of the following step-by-step process. 

The matrix with CL is considered under a prescribed remote load, and all necessary 

material and geometrical characteristics of the system is assumed to be known. Let after n-th step 
of the process, at time t = tn, the CL have sizes /„ and L„ satisfying (74). 

At first, a linear singular boundary 

value problem on the matrix is solved and as 
a result, the values of the SIFs, K      and 

Kzn, and CTODs, 5pn and 8ZJt for the 

present CL state are found (see Fig. 5).  In 

addition, for the current time and crack tip 

position, the value of the energy reserve 
Ayn = Ay{ln,tn) is computed employing 

(70). Then, the thermodynamic forces, Xt n 

and XL n are determined by means of (38), 

(41) and (42), and the rates of crack and CL 
extensions, /„ and L„, are obtained by (69) 

or (70) depending on whether the forces are 

positive or not. 
The transition from time tn to time tn+i is based on the second order Runge-Kutta 

method. The (rc+l)-th time step Atn+l = tn+l-tn is selected so that conditions (74) are met for 

the new CL sizes /„+1 and L„+l as well, and the error for the step does not exceed a prescribed 

allowable value. 

Since the quantity Ay might behave like a jump function, the same manner of behavior 

might be exhibited by the force Xt. This is schematically illustrated by Fig. 10 according to which 

the crack starts grow at instant tt (time of crack initiation) when Xl becomes positive and comes 

to a halt at instant ta (time of crack arrest) when Xt jumps down from a positive value to a 

negative one (in Fig. 10, tQ is the time of the previous crack stop). To "catch" the instant of 

discontinuity appearance, a special numerical procedure is used the description of which exceeds 

the limits of the paper. The process of calculations stops when the rates of crack and CL advances 

f t" 

Figure 10. Force Xj = Y1 - 2*7 
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turn into infinite, or somewhat more specifically, a small time step causes big increments of the 

crack and CL lengths (another approach to halting of the numerical process will be given in section 

11). This signals the end of slow CL growth due to either global fracture of the body (division of 

the body into two parts), or change in the process mode (switching from subcritical mode to 

supercritical one, see the next section). The elapsed time including the time of crack initiation and 

the time of CL propagation previously was called the lifetime, or the time to failure and denoted by 
tt (see section 1). 

Analysis of crack layer behavior could be simplified by transferring to dimensionless 

variables. For that, it is convenient to introduce a new quantity, 

4 = 25jk (75) 

(E is the matrix Young modulus), which has dimension of length and is called the characteristic 

length of the matrix-CL system. The CL and matrix dimensionless sizes, dimensionless remote 

load and dimensionless time are given by 

/ = —,! = -;   W = —//=— ;   a = —;   x = rt = — (76) 
4 4 4 4 Odr *r 

where W and H are the matrix sizes respectively along the CL direction and perpendicular to it. 

The thermodinamic forces (38)-(40) with (53) can be presented as 

X,  =^-[yl(I,L,W,H,T1,(T)-cxV(xx-x)], 

I.   <77> 
*L= m^xL{l,L,W,H,r],o). 

Here according to (38), (41) and (42) 

y, = 8p + (l+t])Sz,   xL = [ä;+(1+217)^1(1^+^) (78) 

and the dimensionless SIFs and CTODs, 8p, 8Z and Kp, Kz, are calculated under E = \,adr = \ 

and dimensionless sizes of the CL and matrix. Introducing the dimensionless phenomenological 

coefficients 
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2 2 

k=~kh    kL = ?^kL, (79) 
rE rE 

the equations (67)-(70) and limitations (71) and (72) now can be rewritten in the completely 

dimensionless form. Two processes of CL growth are similar if and only if all dimensionless 
parameters IQ,LQ,W, H, r\ and a in these processes are identical. For similar processes, 
particularly, dimensionless lifetimes T, coincide. 
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10. Two types of CL growth 

The above numerical solution displays two types of CL behavior depending on particular 

values of process characteristics (characteristic length, dimensionless sizes, shape and level of 

remote load). The first type, a smooth (continuous) CL propagation (Fig. 11a), occurs when the 
thermodynamic force Xt is positive during all the process.   The second type is a step-wise 

(discontinuous) propagation (Fig. 1 lb) which consists of a succession of alternating initiations and 

arrests of the crack and PZ. In such a process, the crack stays immovable for a part of the lifetime 

(see Fig. 10), and this delays advancement of the PZ. Therefore, of two "comparable" processes, 

smooth and step-wise, the former proves to be faster. Processes are defined to be comparable if 

all parameters are identical except for remote load or temperature. For example, crack layer 

growth can be switched from the step-wise mode to the smooth one and significantly accelerated 

by raising load level or temperature. This follows from that, according to (41) and (42), the 
thermodynamic force (53) grows with load and the fracture energy y0 for the PZ material 

diminishes with temperature (see section 3). An increase of the CL length also can be the reason 

for the transformation of the step-wise growth into smooth one, so that a process might be step- 
wise from the beginning and smooth in the end. 

0 
(a) 

/ 

Figure 11. CL growth: (a) smooth, (b) step-wise 

During the entire lifetime of the CL propagation shown in Fig. 1 la, the CL length lags 

behind the equilibrium one, whereas almost all the time of the growth depicted in Fig. 1 lb, the CL 
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maintains the equilibrium size. The relationship between a current CL length and the equilibrium 

one depends on the ratio of the rates of crack and CL advances. Proceeding from (41) and (42), 

the forces for these advances are roughly estimated as quantities of the same order of magnitude, 

and then, in accordance with (69), the completeness of PZ development is mainly determined by 
the relation between values of the phenomenological coefficients fy and kL. The numerical 

simulation presented in Fig. 1 la is performed at kt and kL of the same order of magnitude and in 

Fig. lib for kt ten times greater than kL. So in case of the smooth mode, the CL can be in 

equilibrium only when kL has a greater order of magnitude compared with the one for kt. On the 

other hand, it is natural to presuppose that the PZ develops slower than the crack. From this, it can 

be concluded that the "underdevelopment" of the PZ is a typical feature of the smooth mode. On 

the contrary, for the step-wise mode, because of delay in crack growth, the CL has time to reach 
the equilibrium even if kL is significantly smaller than kt. 

Analysis of the numerical solution shows that in case of the smooth mode, the lifetime 

strongly depends on the phenomenological coefficients, namely, at the coefficients of the same 

order of magnitude, the lifetime is approximately inversely proportional to them. On the contrary, 

in the step-wise mode the lifetime depends only weakly on these coefficients. Increase of the 

coefficients leads to reduction of the time required for the CL to change the state. If this time is 

already noticeably smaller than the duration of CL stay in a stationary state (like in the process 

shown in Fig. 1 lb), then further increase of the coefficients practically does not affect the lifetime 

at all. For such processes, the rate of CL growth is mostly determined by how much time 

precedes an initiation of CL advance which, in turn, depends on the two characteristics of the PZ - 
on initial value y0 of the energy reserve to material fracture and on relaxation time tr of material 

degradation (see sections 3). So, properties of the PZ material strongly influence the lifetime of a 

step-wise CL propagation. In case of the smooth mode, under the natural assumption that 
degradation goes not faster than CL extention, the lifetime is almost independent of y0 

an^ lr-> or 

more precisely, increase in the former causes a slight deceleration of the process (see section 14), 
and the latter does not play any role because all the time the energy reserve Ay practically keeps a 

constant value which is close to the initial one, y0. 

From the standpoint of the analysis given in section 8, a smooth process is unstable since it 

is accompanied by crack growth. The instability, in particular, manifests itself in that the rates / 

and L of crack and CL advancements monotonically increase with time (see Fig. 1 la). Indeed, if 
the process is accelerated, then, according to (67), the thermodynamic forces Xl and  XL, 

monotonically increase, too, and this and relations (36) yield 

j?- 
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dXj_ = 3Xti   3X,L   3Xl=   d2G[     d2G £     d2G > Q 

dt        dl        dL        dt dl2        dLdl dtdl       ' 

dXL     dXL .-     dXL , d2G   ,     d2G _•     n —±= M + ^L = - „   „    / 1- L > 0. 
dt        dl dL dldL dL2 

Hence, because / > 0 and L > 0, 

i^e       ^u     fiGe    ^GU (gl) 

dl2 dLdl dL2 dtdl 

that is the indication of CL growth instability. However, development of this process is controlled 

by kinetic equations (69) and by virtue of this, the CL growth retains a quasi-static character. As to 

a step-wise process, alternation of CL rest and motion corresponds to alternation of stability and 
instability respectively, but globally, the process remains stable until the current value of force ^ 

determined by (53) reaches value 2Ay0 (this matter will be more extensively discussed in the next 

section). At this point the process of slow CL growth is switched from the step-wise mode to the 

smooth one, or in other words, from the stable (subcritical) stage to the unstable (supercritical) 

one. 
As numerous observations on thermoplastics, first of all on polyethylene, show, the step- 

wise (discontinuous) manner of growth is usual for the quasi-brittle crack under both constant and 

cyclic loadings (such a phenomenon for polyethylene is described, for example, in [4, 19]). For 

this reason, further slow crack growth is largely associated with the CL behavior in the step-wise 

mode. There is one more reason for this preference. One of the practical purposes of this 

modeling is a prediction of the relationship between the lifetime and applied load for the long-term 

brittle fracture. The model simulating a step-wise CL growth predicts a relationship of this kind 

which is in reasonable agreement with that obtained experimentally (see section 14). At the same 

time, no plausible lifetime-load dependence can be inferred by employing the model of smooth CL 

growth. 
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11. Step-wise growth. Simplified model 

A step-wise CL propagation can be treated as a sequence of transitions from one CL 

equilibrium to another like that shown in Fig. 1 lb. Such kind of CL growth occurs as a result of 

that the thermodynamic forces governing crack and PZ advances act discontinuously over short 

intervals of time. 

Let the remote load be prescribed uniformly tensile. It is supposed that at present instant t 
the CL is in equilibrium, XL(l, L)= 0 and L = Leq(l), and the energy reserve 2Ay for the PZ 

material to rupture is as small as the value of force (53) for the given CL sizes, 

Yt(l,L) - 2Ay(l,t) = 0. (82) 

i:ki 
K 

^^lAy j^ J 
Yi 

X. 

'    ' 

Figure 12. Step-wise CL growth: (a) high a and small kL, 

(b) low G and big kL 
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It means that at the instant in question the crack starts growing. Increase of / violates the CL 
equilibrium, and force XL becomes positive (see Fig. 8c). So, the crack initiation causes a PZ 

advance. In turn, this advance generates increase in Yt and decrease in XL (see Fig. 7 and 8b 

respectively). In parallel, the energy reserve ahead of the crack tip, 2Ay(l,t), changes in 

accordance with degradation law (72). This "competition" of the thermodynamic forces goes on 

until the crack tip reaches the original undegraded material or the material transformed into the PZ 
not long ago and therefore having yet a relatively high level of the energy reserve 2 Ay. At this 

point, the energy reserve jumps up and correspondingly thermodynamic force Xl drops down to a 

negative value, so that the crack proves to be arrested (see Fig. 10). Meanwhile, the PZ continues 

to grow approaching the new equilibrium length. This relatively short process is followed by a 

waiting for a next crack initiation after which a new step of CL propagation begins. The above 

description is illustrated by Fig. 12 for two step-wise processes the first of which refers to a high 

remote load a and slow PZ advance, i.e. a small coefficient kL, and the second one, conversly, to 

a low remote load and fast PZ advance. As seen, the higher level of the remote load, the smaller 

number of steps during the lifetime and the bigger each step of the process. Increase in the rate of 

PZ advance leads to a decrease of the time necessary for a CL stationary state to be changed and, 
as a result, of the time to failure. Dependence of the lifetime on kinetic coefficient kL is illusrated 
by the curve in Fig. 13. If the value of 2y0 increases, then the "waiting" time (from establishing 

a stationary state to a next crack initiation) becomes longer, but otherwise (the shape of transition 

from one stationary state to another and number of steps within the process) remains the same. 

The above allows a simplification of 

Tf 

12   3   4 5   ki-ku 

Figure 13. Dependence of lifetime on kinetic 

coefficients 

the model for CL step-wise growth based on 

the two following assumptions. The first of 

them says that the CL is always in 
equilibrium, L= Leq(l).   According to the 

second assumption, the time required for the 

CL to change the state is small in comparison 

with the waiting time for crack initiation. It 

means that the intervals of transitions from 

one equilibrium to another contribute only 

small portion of the lifetime, that therefore 

can be determined as a sum of all waiting 

intervals. The above assumptions result in 

the conclusion that the crack lengths in two 
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sequential equilibrium states of the CL are linked by 

'm+l—   Lgqilfn), (83) 

i.e. the crack grows making jumps through the PZ up to its tip (Fig. 14). It is obvious that this 
way of process modeling leads to that the phenomenological cefficients kl and kL entirely fall 

down from considerations. Numerical analysis shows that this approach is justified if kt and kL 

are large enough, or more specific, if the dimensionless coefficients (79) are met conditions 
ki'=kL>5 (see Fig. 13). For such values of kt and kL, the lifetime becomes insensitive to them 

and in practice coincides with the lifetime of the simplified process. The lifetime for the simplified 
process is given by the horizontal line in Fig. 13; if kt = kL > 5, the mistake in lifetime computation 

resulted from the above simplification does not exceed 5%. 

To simplify writings, the PZ material 
is considered perfectly plastic, i.e. r\ = 0.  For 

the simplified model, the second of (69) is 

substituted by the condition 

XL{l,L)= 0(84) 

/. m+l 

L  
U   _. *«-i 

which governs CL growth due to crack 
growth.    Since  L= Leq(l)     for any   /, 

potential P = TI + F. (see section 4) becomes 

a function of the crack length only and, based 

on (36), (38), (39) and (53), is presented by 

expression 

1 
+i 

s K < 

Atn 

1 
i 

i 
i 

i 
i 

*m-l 'm BM-l 

Figure 14. Simplified model of step-wise growth 

3 p 
P(l) = P[l,Leq(l)] = P[l0,Leq{lQ)]-ll

lo^dl. (85) 

In turn, (85) can be reduced to 

P(l) = - a{l)l2 (86) 

<^- 
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where a(/)(>0) is a known increasing function or constant for a finite or infinite matrix 

respectively.   In the simplified model, the PZ is formed simultaneously at all its points, and 
according to (33) while the crack keeps a constant length, say, / = lm+\, the energy accumulated 

within the PZ due to material degradation changes as 

t(lm,t) = 2y0(lm -l0) + 27o[L€?(/m)-/J{l-exp[-r(f-rw_1)]} (87) 

where   tm_l < t < tm   (see Fig. 14).   Using (53), thermodynamic force Xt during the waiting 

interval from tm to tm+l becomes 

Xl(lm,t) = P!(lm+l)-2Ay(lm,t)<0 (88) 

where with (26) 

AyiL'O = 7oexP[-K'-'m-i)]- (89) 

*m      ''fTH-l 

Figure 15. Gibbs' potential as a function of crack length 

The next crack advance and change in CL state occur when the right side of (88) reaches zero, and 

so on. 
Equations (86)-(89) allow the representation of the Gibbs potential G(/) = G[l, Leq(l)] in 

the shape of the saw-tooth curve shown in Fig. 15 where the smooth curve depicts function 
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G0 = -a(/)/2 + 2y0(/-/0). (90) 

One segment of the saw-tooth curve corresponds to one step of the process, for example segment 
ABC to the m -th step. The step begins from formation of the CL with crack length / = lm (point 

A). Then the CL stays stationary during the interval from tm_v to tm (see Fig. 14).   Over this 

interval, as seen from (85) and (87), P remains constant and t increases so that the Gibbs 

potential G = P + t increases, too (the vertical line AB).   Crack jump lm -> lm+l and the 

respective change in the CL length appear instantaneously (segment BC). The tangent to this 
segment at point B is horizontal which signifies condition Xl = 0.   Since 77 = 0, P = Yt and 

according to Fig. 7a, 

#       -*£       <0 (91) 
dl   |J=/„ dl\i=L 

where the equality is exact because now dAy/dl = 0. Inequality (91) indicates that point B is a 

maximum of G, and so transition ß-> C from the m-th state to the (m+l)-th one is unstable. 

Such kind of instability should be called local because the CL state B is followed by a crack arrest 

at state C. By contrast, the instability of the CL equilibrium at point D is global because the next 

equilibrium at point F "lies" outside the domain of CL subcritical growth, i.e. ahead of point E 

which corresponds to a maximum of function G(/) and signifies the transition to CL supercritical 

(smooth) growth. 

The above remains valid for the general case of the PZ, r\ > 0, if function Yt (I) satisfies 

inequality (91). 
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12. Critical crack length. Lifetime-load relation 

In this section, as in the previous one, the CL simplified step-wise growth is considered 

under uniform tensile remote load constant in time. A crack length is called critical and denoted by 
lc if the CL state with sizes lc and Leq(lc) corresponds to the transformation from a step-wise 

(stable) mode of the process into a smooth (unstable) one. The critical crack length is determined 

by condition 

df,(le) - 27o = 0 (92) 

so that lc supplies a maximum of function GQ(l) determined by (90) (see Fig. 15, point E). 

Using the dimensionless representation for Y, given by the first of (77), equation (92) is written as 

y,(i,W,H,7i,(j)- 1 = 0. 

The solution of (93) with respect to / yields 

(93) 

lc= ie{W,H,r\,<r) (94) 

Here, as follows from (75) and (76), the 

dimensionless sizes W and H are not only a 

geometrical characteristics, but also material 
ones.  Critical length lc increases with W, 

H and T] and decreases with a. For the 

case when H does not affect the stress-strain 
field in a vicinity of the CL tip and 77 = 0, 

expression (94) becomes 

log W 

Figure 16. Critical crack length vs. specimen width 

L= UW.a). (95) 

For a finite matrix with a single edged CL, critical length lc depends on matrix width W at fixed 

a as shown in Fig. 16 where the horizontal lines indicate the values of lc for an infinite matrix. 
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As defined in section 1, the lifetime is the time period during which the CL is initiated and 
propagates from initial sizes /0 and LQ 

t0 trie critical ones lc and Leq(lc). In the general case, the 

lifetime can be presented as 

tf =tf(l0,W,H,ri,(j) (96) 

or in the dimensionless variables 

Tf=Tf(I0,W,H,T],(T) (97) 

Let the matrix be infinite and PZ material perfectly plastic, 77 = 0. In this case the "shape" 

of the CL stays constant over all process: 

/ 
— = cosd (98) 

where 6 = KG/2. Because of (83) and (98) an increment of the crack length at the m-th step of 

the process is determined by 

At 1 f        l — cosd, ,„„s 
4'm+i = lm+i -lm= —lm (99) 

cos8 

From (82) with % = %, 

P/(/m)-2roe-
M'-=0, (100) 

waiting time Atm at the m-th step is found as 

Atm=
l-\n^- (101) 

Smoothing of the process, / = Alm+l/Atm (see Fig. 14), and use (99) and (101) yield 

dl       l-cos0 / /1/W — = r = . (102) 
dt cos0     In [2y0//>,(/)] 
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As seen, when P,(l) approaches 2y0, or which is the same, crack length / approaches critical 

value lc, the rate of crack growth indefinitely increases, /—><». 

Equation (102) in the dimensionless variables can be presented as (Appendix E) 

dl _ 1 - cos 6        I (]f)T,\ 
dx ~    cosO     ln(Ic/I) 

where 

/, = -r-£ :. (104) c      %\lncos6\ 

Integration of (103) with the conditions for the beginning and termination of the process 

/ =/0 (T = 0),   l=lc {x = xf) (105) 

results in 
COSO , ,     lr  .? /int:\ x{ = (In -3- )\ (106) f     2(1-cosd)       lQ 

In the dimensional variables 

cosd       . ,   L .7 ,,n-, 
tf=t. (In — ) (107) f      r2(l-cos6)       lQ 

where 

lc = EMM (in6yi, e = *£*. dos) 

Relation (106) between lifetime Xj and load parameter 6  in logarithmic axes for a fixed 

value of IQ, 

logTf = f{logd), (109) 
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has the shape indicated in Fig. 17 (the solid curve). The smaller f0, the closer the curve given by 

(109) to the straight line 

logtf = B - ßlogd (110) fVogO) 

B-ßlogO 

obtained by the least squares method (the 

dashed line). 

Let parameter 9 not exceed 7T/4, i.e. 

dimensionless load a be not greater than 0.5. 

This upper limit of load corresponds to the 

transition from brittle failure to ductile 

[17,18]. For a reasonable range of 9, say, 
for TT/16 < 9 < 7T/4, at small values of I0 

coefficient ß in (110) approximately equals 

2.2. In the opposite case when /0 is large, 

for example lQ is the critical length lc = 1.133 for 9 = K/4, coefficient ß becomes about 6. The 

second coefficient in (110), B, also changes with f0, namely an increase of /0 causes a decrease of 

B. 

What has been said regarding perfectly plastic PZ, 77 = 0, holds for 77 > 0, the only 

difference is in that parameter 9 here is determined as (see Appendix E) 

log 9 

Figure 17. Lifetime vs. load 
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Figure 18. Lifetime vs. specimen width 

(77 = 0,CT = 0.3) 

This also can be extended to the case when 

the matrix is finite and 77 > 0 since matrix 

width W and coefficient 77 only slightly 

affect the "shape" of lifetime-load relation 

(110), although their influence on the lifetime 

itself might by very significant.   In other 
words, variations in W and 77  may lead to a 

noticeable change of B in (110), but leave ß 

almost invariable. Particularly, dependence 
of lifetime rf on matrix width 
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W at varies constant ratios l0/W is iilusrated by the curves in Fig. 18 constructed for 77 = 0 and 

a = 0.3. This plot can be treated, for example, as follows. Let the matrix-CL system with given 

sizes W and /0 be considered for various materials and let a change of material characteristics E, 

<Jdr and 70 cause a change of critical length /,. Then, an increase of /, results in a decrease of W 

and /0 so that ratio lQ/W remains invariable and dimentionless lifetime rf increases. Such 

behavior of zy depending on W at fixed l0/W also holds for the smooth mode of CL growth. 

The above lifetime-load relation at fixed temperature is examined by comparison with that 

obtained experimentally for thermoplastics. Particularly, equation (110) with the indicated range of 

ß is in a good agreement with numerous experimental data about brittle fracture of polyethylenes 

according to which 

logtf = A-aloga^ (112) 

where a varies from 3 to 5 [28]. Thus, the present model correctly describes the process of 

subcritical crack growth in terms of lifetime-load relation at a given temperature. To establish 

connection between these relations for different temperatures, equation (28) expressing dependence 
of time scale tr on temperature is employed. Based on the model and on experimental data [17, 

18], a time-load-temperature relation for one type of thermoplastics has been constructed in [40]. 

&■■ 
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13. Tension under prescribed displacement 

Here, the simplified step-wise process is employed to describe CL propagation through a 
finite matrix edges of which are displaced with a prescribed rate (Fig. 19). Load ap is assumed 

uniformly distributed along the transverse edges of the matrix, and the edge displacement v is 

understood as the generalized displacement conjugated to the edge load: 

vp = wl°v(x,H)dx- (113) 

Hx,H) 
r-J- 

w 

v(x-H) 

H 

H 

Figure 19. Illustration of boundary conditions 

Displacement vp can be shown to be connected with the edge load a  by (Appendix F) 

+ ^(^0)^+yfvU,0)&. (114) 

In the right side of (114) the first term signifies the displacement of the body without the CL and 
the sum of two other terms is the additional displacement arising from CL presence; v(x, 0) 
stands for the CL opening due to unit edge load, ap = 1. Let, for definiteness, the edge 

displacement change with time as vp = vp t where rate vp is given. Quantities <Jp ,1 and L being 
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unknown functions of time are subject to determination. For the simplified model, the crack and 

CL lengths, / and L , are linked by equation XL = 0, or 

Kp{L,Gp) + (l + T])Kz(l,L) = 0 (115) 

which means that the CL always has the equilibrium length for a current crack length and edge 

load, 
L = Leq(l,(Tp) (116) 

The criterion of crack initiation is formulated as 

^(/,L,cT/,)-24r(/,r) = 0. (117) 

The system of equations (114)-( 117) establishes a complete specification of a solution. 

The CL growth is divided into separate stages. During each of them a crack length / stays 
invariable. Increase of edge displacement vp leads to increase of edge load ap and of the CL 

length L. These changes are described by non-linear equations (114) and (115) which are solved 
numerically by means of an iterative procedure. An increase of <Jp   and L causes a respective 

increase of 1/. On the other hand, as a result of PZ material degradation, the energy reserve Ay 

decreases. A current stage of the process comes to an end at that instant when condition (117) of 

CL local instability is reached (see section 11), and the CL jumps to the new state in which, 

according to (83), the crack length equals to the previous CL length. 

A character of relation between the edge load and displacement depends on relation 

between the rate of edge displacement growth which is controlled and the rate of PZ material 

degradation which is a material property. The latter mostly determines the rate of CL advance: the 

faster degradation, the faster CL growth. So, the process under consideration can be treated as a 

result of two processes evolving simultaneously: displacement increase and CL propagation. 

These processes are competitive because growth of the edge displacement leads to increase of the 

edge load, whereas extension of the CL results in load decrease. 

For a given material, i.e. for a given rate of degradation, relation between the edge load and 

displacement at two rates of displacement are shown in Fig. 20. If the rate of displacement is low 

(Fig. 20a), then the CL grows until its tip reaches the opposite edge of the matrix. During this 
process, force Y[ always remains smaller then 2y0, i.e. the condition of global instability, 

«sr 
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Yt(l,L,cJp)-2y0=0, (118) 

never takes place. In the case when the displacement (cross head) rate is high (Fig. 20b) 

I    2y„       2Ay 

Figure 20. Load and thermodynamic forces vs. displacement at: 

(a) low and (b) high cross head rates 

the duration of a process stage proves to be so short that degradation of the PZ material has little 

time to occur. Then condition (117) can be written in the form 

15(/,L,(T_)-270(l-rt|.) =0 (119) 

where time f, of crack initiation is such that rti «1. As seen from comparison of (118) with 

(117), the condition of local instability actually does not differ from that for global instability. As a 
result, the crack initiation time is inversely proportional to the displacement rate r, <*= 1/v, and the 

curves ap vs. vp for various v coincide, or in other words, if v —»°°, relation a - v  approaches 

a certain limiting one. 

jr- 
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14. Dipole on crack boundaries 

Let an infinite matrix be loaded by the two forces (dipole) applied on the crack boundaries 

as shown in Fig. 21. Step-wise propagation of the CL induced by the dipole is studied on the basis 

of the simplified model of the process. In this case, the SIF and CTOD due to the dipole are 

expressed in the form (see [41, 42] and Appendix F) 

P 4P i 

*E ln[(L + 4& -l2VI] 
(120) 

Figure 21. Infinite matrix. Dipole on crack 

boundaries 

and those for traction adr, K. and Sz, 

remain the same (see Appendix D). 

Proceeding from the simplified model of CL 
growth, equation XL = 0 is written as 

KJL, P)+ (1 + 2n)KJl, L) = 0.     (121) 

Hence (see Appendix F) 

/ 
 = cos9,   d = 
-eq 2(l + 2T])(TdrL 

, (122) 

and the thermodynamic force (53) is determined by 

me) = ^-{-^- [        * - (1 + r7)sin0] - (1 + T7)lncos0} 
KE    COSö   i„ l + smt/ 

(123) 
ln- 

COS0 

The dipole is assumed to increase as  P = Pt where rate P is a given constant. Like in 

the previous section, the CL growth is a sequence of crack stationary positions. As it follows from 
(122) and (123), increase of P at fixed / leads to growth of L and Yt, whereas Ay diminishes 

due to PZ material degradation. The crack stays arrested until condition 

me)-2Ay(l,t) = 0 
**?■ 

(124) 
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Figure 22. Crack and CL lengths and thermodynamic forces vs. dipole at: 

(a) low and (b) high rates of dipole increase 

is satisfied, and upon achievement of (124) the crack instantly sprouts through the PZ. This 
causes a drop down of Y, and jump up of Ay, and as a result the crack is found to be arrested 

again. The typical behavior of the CL is shown in Fig. 22a. As the process is evolving, the value 
of Yt at the instant of crack initiation approaches 2y0. However, even attainment of condition 

Yt = 2y0 may not terminate the process. An example of such CL behavior is given by Fig. 22b in 

which the process is related to a high rate P. Here the condition of local instability in fact does not 

differ from that for global instability (see the previous section). In case of a finite matrix, the 

process comes to an end when the CL tip reaches the matrix edge. 
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15. Concluding remarks 

The crack layer model - if material parameters are determined appropriately - allows a 

prediction of the lifetime for brittle fracture that is in a good agreement with that obtained from 

observations. This is the most important result from the standpoint of applications. 

The experimental procedure to determine material parameters has to include studies of a 

particular thermoplastic itself, as well as of the material occurring as a result of cold drawing of the 

original polymer. This procedure requires development in conformity with nature of the material. 

Fracture behavior of a polymer material is connected with its chemical properties and also 

essentially depends on the process of structural element manufacturing that produces anisotropy, 

residual stresses, etc. The combination of these two factors - what a material is in terms of 

chemistry and how a structure from this material is manufactured - creates an initial condition of 

the material within the structure. 

The material condition changes with time, i.e. the material ages. An approach to describe 

the phenomenon of material aging is proposed in Part 2. 
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Appendix A. On evaluation of energy release due to PZ formation 

The purpose of this section is to check equality (10), 

£cj0
mö*dx = !0

LGpö*dx + 2n0, (Al) 

where notations are given in section 2. The two states of the cracked body shown in Fig. Aa and b 

are considered. 

^ 

—io- 

ta) 

Gdr 

.-^rSö 
lo-| 

L 
i  

(b) 

Figure A. On energy balance of PZ formation 
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In terms of the CL opening displacement, states in Fig. Aa and b are equivalent to those 
depicted in Fig. Ac and d. The work-reciprocal theorem applied to the two last states yields 

ft<Tp5'dx-ifa°m-<Tp)6'dx = f0CTpö0dx, (A2) 

JLai S'dx = jj ap 5*dx - JL<y, SQ dx. (A3) 
or 

Here the last term in the right side is the double work done by the traction acting on the crack 
boundary on the crack opening displacement <50 due to the transition of the body from the 
uncracked state to the cracked one. The change in the elastic strain energy, FQ, and the work done 

by all external forces due to this transition are linked as 

F0=-±ßcTpö0dx + Wp,Q (A4) 

where W Q is the work of the remote load. Hence, with notation J70 for the change in the total 

energy due to cracking, there follows 

-j'0a0ö0dx=2(F0-Wpt0) = 2nQ. (A5) 

Upon substituting (A5) into (A3) the latter becomes identical to (Al). 

.,*?■• 
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Appendix B. Thermodynamic forces as functions of SIFs and CODs 

According to (29), 

dn 
dl       2dl 

{\LQap8dx + \\ adr5dx) = hfto^dx - adr5{l) + \\adr ^<&]       (B1) 
<?/ Ä 

where 5{l) = 8p + 6. (see notations in section 5) and <9<5/<9/ is the CL opening caused by the 

forces shown in Fig. B la. Application of of the work-reciprocal theorem to the two states depicted 

in Fig. B la and b results in 

L_J 
wai 

Gdr 

-Li- 
-M, 

I (a) 

I Gdr 

1. 
J-L 

I 

CöS/öDdl 

(c) 

Figure B1. On evaluation of thermodynamic force for crack advance 
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\L
0ap^dx = cydr8p. (B2) 

Similarly for the two states shown in Fig. B la and c 

-JX§^ = ^A- (B3) 

Substitution of (B2) and (B3) into (Bl) yields 

dn 
di 

= odA. (B4) 

The derivative of (30) with respect to / is postulated to equal 

^ = -adr 8(1) + (1 + 7]) \\adr ijdx. (B5) 

Here in the right side the first term describes PZ unloading as a result of crack advance, and the 

second term expresses PZ widening due to an additional transformation of the matrix material to 

the PZ one (Fig. Bid). Division of the PZ deformation potential as indicated by (13), (18) and 

(21) with (B5) leads to 

" In = Gär^p+25z^  Zl = ~Tt = nadA- (B6) 

Using (B3) and combining (B4) and the first of (B6), the part of the thermodynamic force 

determined by the first of (39) becomes identical to the first of (41): 

"=-¥-§ = <^<W <B7) 

Equation (29) with 8(L) = 0 gives 

:,?■■ 
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dn KrL      98 do all a    ,rL      z j       (L       j. j N     l ,rL      do  .      tL       do  , . (B8) 

The first integral here can be evaluated based on an analysis of the two states shown in Fig. B2a 
and b where s = sp+s, and sp and s. stand for stress component cryy ahead of the CL tip induced 

by tractions Gp and adr respectively (see Fig. Ad). 

ß8/?>L) dL 

(c) 

.  Figure B2. On evaluation of thermodynamic forces for CL advance 

Use of the known formulas, 

K.        d8 ,r     S(KD + KZ)  .  
*„=^=,   ^rrdL=      _",—*' ^ dL - r    (0<r<dL), p    Jlnr'   dL E^lrt 

(B9) 

&•■ 
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and the work-reciprocal theorem, 

,      dS (dL2Kp{Kp + Kz)  VdL-r 

^G»&dx-^ —7i—i'—Jr = 0' (B10) 

give 

faH*" E ■ <BU) 

The work-reciprocal theorem for the two states shown in Fig. B2a and c allows an evaluation of 

the second integral in (B8) as 

fXf^-^±M. (B12) 

As follows from (BIO) and (B12), 

(B13) 
dn =     (Kp + Kz)(Kp-Kz) 

dL E 

and according to (B12), 

dP_     2Kz(Kp + Kz) dZ      27] Kz(Kp + Kz) 

dL~ E '   Z'=~JI = 1 • (B14) 

Combination of (B13) and the first of (B14) yields 

dn     dF      (K„ + K.)2 
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Appendix C. Thermodynamic forces as functions of crack and CL lengths 

The remote load is considered uniformly (relative to x-axis) tensile, so the uncracked body 

is subject to an uniaxial tension (towards y-axis). For the case 77 = 0 and for given matrix sizes, 

forces (41) are functions of two variables - the crack and CL lengths, / and L. Let the crack length 
be fixed, / = /0, and the CL length, L = LQ, be determined as the solution of the equation 

PL(lQ,L)=0. (Cl) 

As seen from the second of (41), the total SIF for this CL length is equal to zero, 

Kp(L0) + Kz(l0,L0) = 0, (C2) 

and so the above-determined CL length coincides with one of the effective crack in the DB model. 

It is convenient to introduce the following dimensionless functions 

5(0= P'il'^\   Pl(L)= P,(l°'L) (C3) 

of the crack length / with the range of the variable from /0 to LQ. The graphs of functions (C3) 

are shown in Fig. Ca, where the tangent to the curve pL (/) at point / = /0 is horizontal, i.e. 

d2P 
= 0. (C4) 

dldL  |/=^=A> 

Another pair of dimensionless functions 

p(/)= PLU-LO)     p(L)= PLVO-L) 

of the CL length L with the same range of the variable have the graphs depicted in Fig. Cb; the 

dashed line displays the second function for the case when the crack layer length is large enough in 

s^' 

63 



comparison with the matrix width.  Here the tangent to the curve pL(L) at point L = LQ is 

horizontal, and so 

d2P 
dLdl 

= 0 
|/=<b.J.= *o 

(C6) 

0 o 

1 A(L\\ 

\/  \ X    ^ /\PL(L) 

0 
1           \ \ 

(a) 

Figure C. Thermodynamic forces as functions of crack and CL lengths 

which accords with (C4). Besides, the tangent to the curve pL(L) at point L = LQ is horizontal, 

too, 
d2P 
dL*     U=lo,L 

= 0, (C7) 
fe.i-A) 

as it immediately follows from definition (Cl) of LQ. 

The graphs in Fig. C and equations (C4), (C6) and (C7) give an idea about shapes not only 

of the first partial derivatives of P, but also of the second ones, and will be essentially employed at 

the further analysis of CL stability and kinetics. 
For the case 77 > 0, length LQ of the CL is determined as the solution of the equation 

Kp(L)+(l + 2T])Kz(l0,L) = 0 (C8) 
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with /0 fixed. By analogy with (C3) and (C5) the dimensionless functions 

7,(1) =  Y,(l,L^] ,     YL(L)= Y^'L)- 

xL(i) = JkiLJAt  xliL) = MbiR 
(C9) 

are introduced. Their graphs have the shapes mostly similar to ones shown in Fig. C, but there are 
two differences: first, function Yt(l) might (but not necessarily) behave in a rather different way 

(see the dashed curve in Fig. Ca), and second, instead of equalities (C4), (C6) and (C7) the 

inequalities 

?£±zi =^£±S <0, *£+£> <o (cio) 

take place. 
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Appendix D. Infinite matrix. Second derivatives of Gibbs' potential 

Let an infinite matrix with a crack of length 2L be subject to an uniform tensile remote 
load so that ap is constant. Then, 

Kp = ap -JTL,   Kz=-2<JdrJ- cos"1 -, 

(Dl) 

s = ^^j~7,5z = - ^L[A/7FT7C0S-'1 + /in 1]. 
"      E   w f TtE  ^ L L 

i 

i 
If a PZ length is essentially smaller than a crack layer length, 

- = cos0,   0 « 1, i (D2) 
La 

the derivatives of (Dl) relative to / and L are determined as 

^£L-O,   ^Eü = 5L(£,   ML = _ ^*L - _2^t 
dl '     dL        2U'     <?/ <?L      V7TL0' 

(9/ <?L £0 '    (9/ <9L KE ' 

For the case T] = 0, expressions (D3) with (41) yield 

d2G = <92G =    d
zG = *<ydr<yp 

dl1      dL2 dl dL        EB 

(D3) 

(D4) 
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Appendix E. Infinite matrix. Kinetic equation and critical crack length 

For the case in question, SIFs and CODs are determined by (Dl). The equation of CL 

equilibrium, i.e. the first of (50), yields 

— = cosö,   9 = p-    (< 1). (El) 
Leq 2(l + 77)<r„r 

Then, thermodynmic force Y{ determined as 

%{l) = crdr[5p(l,Leq) + (l + r»8z(l,Leq)] (E2) 

is written in the form 

K=^&£[770tan0-(l + 77)ln0]. (E3) 
KE 

At 7} = 0, (E3) gives Pt, and with (75) it results in 

2*L = ^—. (E4) 
Pt(l) 8/lncosö 

The critical crack length is found as a solution of (92), or in the considered case, from equation 

P)(1) = 2YQ.   With notations 1=1/1, and lc = lcIU (E4) allows the representation of kinetic 

equation (102) in the form of (103) and the dimensionless critical crack length in the form of 

(104). 
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Appendix F. Edge displacement of a cracked body 

The edge displacement of the matrix with the CL (Fig. 19) comes out as a sum of two 
terms. The first is the displacement produced by the edge load ap in the solid body, i.e. without 

the CL, v{p} = opHI E. The second is the displacement due to presence of the CL. To evaluate 

it, the two states shown in Fig. F are considered. On the basis of the work-reciprocal theorem 

►      "     •.      <»     .h    ,i 

^L 
t 
H 
\ 

i 

l 

\ 
H 

\ 
'' >>   > 

w 

Figure F. On evaluation of edge displacement 

Hence 

■L-, 
Jo V

P  
dx = °p Jo v(x)dx ~ <*drli v(x)dx 

vD = ^— + ^-\!;v(x)dx - ^-\fv{x)dx. 

(Fl) 

(F2) 
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Appendix G. Infinite matrix. COD and thermodynamic force due to dipole 

The state shown in Fig. G is considered. The displacement conjugated to dipole Q is the 

crack opening <5. According to the Castigliano theorem, 

Pt 

r—->\ 

-1* 

t 

Figure G. On evolution of COD due to dipole 

8: 
dF 

(Gl) 

where F is the elastic energy that can be 

evaluated by 

F \LdF Ar (G2) 

By dF/dg one implies the rate of change in 

the elastic energy due to symmetrical (in both 

directions) crack growth. Then, 

g-i"?+*?> (G3) 

where g stands for the crack current length, and Kt and Kr are SIFs for the left and right crack 

tips respectively. Substituting first (G3) and into (G2) and then the result obtained into (Gl), the 

expression for 8 becomes 

8 = j, (Kl—-L + K.—-^)dg. (G4) 

In the case in question 

*i-=e+J§^ß> * 1 {P+{0iQ) {g>l); (G5) 

if g<l, the second terms in the right sides of (G4) have to be dropped. Now, (G5) is put into 

(G4) which with Q = 0 gives the value of crack opening 8 due to dipole P alone: 

69 



p    KE
]I
 g ig + l    is-l KE     I      \       / 

The equation of CL equilibrium defined by the first of (50) is written as 

P   ■-2(l + 77)<T,rApcos-'! = 0 (G7) 
JKL dr\K L 

where the seconds of (Dl) and (G5) are used. Equation (G7) results in 

— = cos0,   6 = . (G8) 
Leq 2adr(l + 2ri)L 

And finally, by means of the firsts of (41) and (42) as well as the fourth of (Dl), (G6) and (G8) 
the expression for thermodynamic force Yt defined by (53) is evaluated in the form (123). 
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I. Introduction. 

Material aging is understood as changes of material properties with time. The aging 

is usually observed as an improvement of some properties and a deterioration of others. 

For example an increase of rigidity and strength and reduction in toughness with time are 

commonly observed in engineering materials. In an attempt to model aging phenomena 

on a continuum (macroscopical) level one faces three major tasks. The first is to iden- 

tify an adequate age parameter that represents, on a macroscopic scale, the micro and 

submicroscopical features, underlying the aging phenomena such as nucleation, growth 

and coalescence of microdefects, physico-chemical transformations etc. The age parameter 

should be considered as a parameter of state, in addition to the conventional parameters 

such as stress tensor and temperature. 

The second task consists of formulation of a constitutive equation of aging, i.e., equa- 

tions of age parameter evolution expressed in terms of controlling factors, e.g., load and 

temperature. It is expected that at common circumstenses a small variation of controlling 

factors results in a small variation of age parameter. However, at certain conditions, a sud- 

den large variation of age parameter may result from a small perturbation of controlling 

factors. Experimental examination, classification and analysis of the condition that lead 

to such a catastrophic behavior, constitute the third task of the modeling. Formulation of 

local failure criteria within the scope of continuum mechanics is an example of this task. 

In many engeneering materials the aging is manifested in variations of mass density 

as well as in the spectrum of relaxation time. Thus in a macroscopic test the aging can 

be detected in variations of intrinsic (material) length and time scales. Following 

this notion, in the present paper we employ the material metric tensor G as an age 

parameter. An evolution of G in 4D -material space-time determines in our approach 

an inelastic behaviour and time dependent material properties recorded by an external 

observer. 

The objective of the present work is to derive the constitutive equations of aging based 

on Extremal Action Principle. The variational approach seems to be most promissing in 

view of complexity of the problem and lack of experimental data. It provides with a 

guide line for the experimental examination of the basic assumptions and modifications, if 

necessery. 

The major task in implementation of extremal action principle is the construction of 

an appropriate Lagrangian. In variational formulations of Elasticity theory the Lagrangian 
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is usually constructed in terms of invariants of the gradient of deformation. In Classical 

Field Theories invariants of metric, connection and the corresponding curvatures together 

with the gradients of "material fields" are emploied in the Lagrangian ([2],[16],[18]). In 

the present paper we combine the above approaches and revisit the classical continuum 

mechanics from the point of view of an intrinsic (material) geometry that includes an inner 

time. 

A brief exposition of various works in Gravity, Elasticity and Geometrical Field The- 

ories most pertenent to the present studies is given in Appendix A. 

In Section 2 we discuss the kinematics of an aging media emploing a 4-dimentional 

material space-time P = fix B endowed with the 4D-metric G of Lorentz type (intrinsic 

metric) embedded into 4-dimentional Absolute (Newton's) space-time M4. We define the 

mass form and formulate the mass conservation law that, in the context, gives a non-trivial 

relation between the "reference density" po and the time evolution of the material metric 

G. A strain tensor E and a "ground state" are introduced as a measure of deformation 

and a natural analog of the "unstrained state" respectively. The central part of the work is 

the Section 3 where we propose a variational formulation of aging theory. The equation of 

Elasticity together with the generalized Hooke's equation are conventionaly derived con- 

sidering the variation of the action integral with respect to the deformations </>\ Similarly, 

new equations of evolution of the age parameter (and, therefore, of elastic moduli, mass 

density and inelastic deformation) result from the variation of the action integral with 

respect to the material metric tensor. The balance equations (conservation laws) result- 

ing from the symmetries of the Absolute (Newton's) space-time and material (intrinsic) 

space-time respectively and the relations between them are discussed in the Section 4. 

Considerations of the paper are illustrated in section 5 by the example - linearized model 

of aging of a rod whose time dependent elastic properties and irreversible deformation are 

associated with an evolving metric in 2D material space-time. In Section 6 we discuss the 

nonlinear aging of a rod under the constant load (creep). 
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2. Kinematics of aging media. 

Material body is considered here, in a conventional way, as a 3D manifold B, i.e. a set 

of "idealized" material points (with the coordinates X1,1 = 1,2,3). Cylinder P = Rx B 

(with the coordinates (X° = T,X[,1 = 1,2,3)) equiped with the Lorentz type "intrinsic" 

("material") metric tensor G with components Gu is refered to a material "space-time" 

(P, G). We require that all the sections B? = {T = const} are space-like, while the 

material "world lines" {R x (Xr,I = 1,2,3)} are time-like with respect to the metric G. 

Metric G defines the 4D volume elment 

dV = y/^\G\d4X, 

here \G\ is the determinant of the matrix {Gu). 

History of deformation of the body B is represented by a diffeomorphic embedding 

<j> : P —*■ M of the material space-time P into the Minkowski space M = R4 (with the 

coordinates (t = x°,xl,i = 1,2,3)), equiped with the 3D Eucledian space metric h with 

components Sij. In examples below we restrict </> by requiring t = 4>°{X) = T. Such 

deformations are called " sinchronized". 

Using the deformation </>, we define the slicing of P by the level surfaces of the zeroth 

component of <j> 

B*,t = 0° "lW = {(T,X) e P\4>°(T,X) = *}■ (1) 

For the sinchronized deformation B^t = Br=t, therefore these surfaces are spacelike 

(see above). We assume the same to be true in the general case. 

There is a "flow vector field" u^ in P associated with the slicing B^t of the space-time 

P. It is the only time directed vector field orthogonal to the slices B^t for all values of t 

and < UfaUf >= -1 (see [2],[16]). For sinchronized deformation <f> and the block-diagonal 

metric G in coordinates T, X1,1 = 1,2,3 we have 

u4> = [-Goo]'1 QJ;- 

In addition to the volume element, the mass form 

dM = p0dV 

is defined in P. The reference mass density po, defined by this representation satisfies the 

mass conservation law 

CU4>dM = 0, 
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where Cu<t> is the substantial (Lie) derivative in the direction of the field u. In the sinchro- 

nized case the mass conservation law is equivalent to the following representation of the 

reference density: 

Po(T,XI)=po(0,X)J^-, (2) 

where po(0, X) is the initial value of po (we assume that G(0, X) is the Minkowski 

metric). Space density p is defined, as usual, by the condition 

<j)*(pdv) = podV, 

that gives 

where J(4>) is the Jacobian of the deformation (j). 

Slicing Bj, tt defines the covariant tensor 

7 = G + u<t, ® 11$, 

(see [24],[2]). Denote by n the orthonormal projector II = G~lj to the planes tangent to 

the slices B^f Tensor 7 induces the time dependent 3D-metric gt on the slices B^ tt (see 

[10]). In the sinchronized case and the block-diagonal metric G, gt is just the restriction 

of 4D-metric G to the slices BT- We do not put any father condition on the metric gt- In 

particular, it may have non-zero curvature (i.e incompatibility of deformation). Apparently 

there are residue stresses associated with this curvature. 

We also introduce the 4D tensor 

K4 = G-1C4(0) - u^ ® u. «/,, 

where  C4(<f)) = <j)*h, and define 3D-elastic covariant strain tensor Eel as follows 

E{(f>)el = \llln(K)Tl = \mn(G-lfh -u^^u. ^U. (3) 

Then, 3D elastic strain tensor E((f>)el results from the restrictions of tensors G~l and 

<j)*h to the slices B^t (see Appendix B). It is a natural measure of a deviation of the actual 
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State from the "ground state". For the sinchronized deformation <f> and the block-diagonal 

metric G, 

Eel = \ln(grlC{<l>)) 

i.e conventional logarithmic measure of deformation. 

The total deformation Etot of the body at each given moment T that measures the 

deviation of the deformed Eucledian metric 0*/i|s0it from the initial (Eucledian) 3D-metric 

h on BT translated there from B, 

Etot = \ln(h-xC(<t>)), 

in important practical cases can be represented as the sum of the elastic deformation 

Eel = hn(grlC(<j>)), 

and an irreversible deformation 

Eir = \ln(h-lgt) 

(the logarithm of (l,l)-tensors is taken on the slices B^ )t): 

Etot = Eel + Eir^ (4) 

The diagram below presents the above decomposition. 

The actual state under the load at any given moment T results from both elastic (with 

the variable elastic moduli) and inelastic (irreversible) deformations. The "ground state" 

of the body is characterized by the 3D-metric gt. This state is the background to which 

the elastic deformation is added to reach the actual state (compare [29]). 

Transition from the reference state to the "ground state" that manifests in the evolu- 

tion of the (initial) Eucledian metric h to the metric gt can not be described, in general, 

by any point transformation. Transition from the "ground state" to the actual state at 

the moment t also is not compatible in this sense. Yet the transition from the reference 

state to the actual state is represented by the diffeomorphism </>t. 
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Here we consider the material 4D-metric G and the deformation 0 (or elastic 

strain tensor Eel((f)) plus the zeroth component (j)° of the deformation) to be the dynamical 

variables of the theory. Reference density po is found by the formula given above if its 

initial value po{T = 0) is known. In this study we restrict ourselves to the (quasi)-static 

version of the theory. Dynamical case is discussed elsewhere. 

E^-lnfe-Vi) 

Ground State: metric gt Actual State: metric <j)t'h 

Aging: Lug=K(gt>,(})l) <{>t - observable deformation 

Reference State: metric h (eucledian) 

Figure 1. Decomposition of kinematics of aging media 
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3. Variational formulation of equations of aging. 

Variational principle 

Following the framework of the classical field theory we take Lagrangian density 

£(G, E, <jp) refered to the volume form dV = y/-\G\d4X as a density that depends 

on the dynamic variables of our model i.e. 4D-material metric G and the deformation 

history <j>: C{G,Eei,<jP) = L(G,Eel,<f>°)dV, with L(G,Eel,(j)Q) being the Lagrangian. 

Deformation $ is essentially 3-dimensional in the sense that it deformes only the 

spacial Eucledian metric h in M and, the 4D-tensor 

C^tft) = (p*h 

is the degenerate metric in P. We compare it with the tensor 7 = G + u^Qu^. Elastic 

deformation Eel measures the deviation of C{<f>) from 7 on the slices B^tt. 

Coincidence of ^\BT and C(<j>) is possible if there is no elastic deformation and if 

deformation <j> describes just an evolution of the metric gt. 

Zeroth component </>° of the deformation plays the special role in our considerations. 

Relation between the laboratoy time t and the proper intrinsic time r in P is given (in a 

homogeneous case where t = 4>°{T)) by the relation 

V^G, 
dr = \J—GoodT = —-*—dt, 

and, therefore, <p° (or rather, its derivatives) characterise the rate of proper intrinsic time 

flow - "rate of aging" of the material. 

Based on these arguments we present the Lagrangian L(G, E) as the sum of the 

"ground state" Lagrangian Lm{G) that depends on the metric G only, of the elastic part 

Le(G,E) that is a perturbation of the metric part due to the elastic deformation and of 

the intrinsic time evolution part Lt(</>°, G): 

L = Lm(G) + Le(E
el) + Lt(0°,G). (5) 

In a quasistatic theory we ignore the kinetic energy and the second term is simply 

related to the elastic strain energy / that is assumed to be a function of two first invariants 

of the (l,l)-strain tensor Eel : Tr{Eel) and Tr{{Eel)2). 
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Le(E
el)=po(f(Eel)+po(0)F), (6) 

where 

Po =Po/po(0) = JTQT 

is the reference density normalized to its initial value and the strain energy has the form 

f(Eel) = ^Tr(E*1 2) + ±(Tr(E°l))\ 

ß and A are initial values of elastic constants. F is the potential of the body forces. 

In more general consideration, one can take the strain energy Le as a function of joint 

invariants of tensor Eei with the tensor K and the Ricci tensor Ric(gt) of the metric gt. 

Notice that when the intrinsic metric G coincides with the Minkowski metric (with 

c=l), tensor Eel is the usual strain tensor of the classical elasticity theory ([19],[21]) and 

the expression (6) is the conventional quadratic form of the strain energy of linear elsticity. 

The term Lm(G) in (5) can be interpreted as the "cohesive energy" of the solid. We 

assume that the ground state Lagrangian Lm(G) depends on G, on the invariants of the 

tensor of extrinistic curvature 

K, = £U4,7 

of slices B^ jt in the material space-time P (see [10],[24],[30]) and on the Ricci tensor 

Ric(gt) of the metric gt. In the case of a block-diagonal metric G, 

-C 
and, therefore, fC is, essentially, the time derivative of the 3D projection g of material 

metric G: 

£j =   ,  n   G    GAJ,O- 
V— t-*oo 

Tensor K, is interpreted as the rate of change of effective intrinsic spacial scales in the 

media due to different inelastic processes together with the influence of elastic deformatin 

on these processes. ^. 

The ground state Lagrangian Lm is constructed as a linear combination of quadratic 

invariants of tensors Ric(gt) and K.: 
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Lm(G) = F(G) + Q(G)Tr(JC) + aTr{K?) + ßTr(lC)2 + rR{gt). (7) 

Here F(G) is the initial energy density (per unit mass) that is considered (as well as 

the coefficient Q{G)) as a function of the 3D volume \gt = nGTI| and Goo + (l — II)G(1 — n), 

R(gt) is the scalar curvature of the 3D metric g. Coefficients ar are numerical parameters 

to be choosen later. 

In simpliest cases (homogeneous case, ID case) scalar curvature R of the metric gt is 

zero and the last term in (7) vanishes. More general case where g has nonzero curvature 

localized on some surfaces or lines (situation studied in gravity by A.Taub [31]) will be 

considered elsewhere. 

Notice that the 4D-scalar curvature R{G) of the metric G can be expressed as —(£r(/C2)- 

{trJC)2) + R{gt), up to a divergence term (see [24], Sec.21.6 or [10]). As a result, Hilbert- 

Einstein action R(G)\/—\G\ is the special case of (7). 

Role of the third term as the " intrinsic time evolution part" was mentioned above. 

Following the standard procedure for the Lagrangian formulations of the Elasticity 

(see, for example, [21]) we add the surface term JW(<1), G)d3H with W representing the 

power of surface truction; to formulate the action integral on a tube domain U = [0, t] x V, 

with (V, dV) being an arbitrary subdomain of B with the boundary dV: 

Au(GJ)= [ (Lm()C) + Le(E))dV + [   W(<j>,G)d3Z. (8) 
Jv JdV 

Euler-Lagrange Equations. 

Variation principle of extremal action 6A = 0 taken with respect to the dynamic 

variables 4> and G gives a system of Euler-Lagrange equations that can be interpreted as 

the coupled elasticity and aging equations 

dCe        d    ( d£€ 

d<j)m     dX1 V defy 
+ PovHa[(VF)m = 0,      7 = 0,1,2,3. (9) 
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Elasticity Equations (9) are obtained by taking the variation 6A with respect to the 

components 4>% inside the domain U. These equations (excepr of one with 1=0) coincide 

with the conventional equations of equilibrium of the Nonlinear Elasticity. However their 

special features are associated with the different definition of the elastic strain tensor Eel 

and with the dependence of the elastic Lagrangian Le on time through the metric G and 

in general through the Ricci tensor and the extrinsic curvature tensor. As a result, tensor 

of elastic constants is a function of these parameters and, therefore, of time. Evolution of 

these parameters is defined by the equations (10) (refered as Aging Equations). 

Zeroth equation describes the evolution of the intrinsic time parameter r and reflects 

the change in the rate of the processes going in the media (in terms of relaxation times) - 

aging of the material. Its more detailed study and the relation with the thermodynamical 

propweries of the media will be subject of the other paper. This equation is trivially fulfiled 

for sinchronized deformations (<f>°(T,X) = T). 

The Hooke's law (obtained by the equating zero of surface variation of deformation 

history 4>l) takes the form 

—e =PL   /,m = 0,l,2,3. (11) 

Here 

d<f>m 

is the first Piola-Kirchoff tensor, with Pr being the components of the traction surface 

density (Wd3E = F7dE/). Using Hooke's law and assuming the absence of body forces 

(VF = 0) one can rewrite the elasticity Equations in the well known form 

^--1,^-O.m. 1,2,3. (12) 

If £e is traslationally invariant in space, the first term in the left side vanishes. 

Aging Equations 

Variation of the action with respect to the metric G give us the equations of the 

material metric G evolution i.e. the aging equations (10) where 

1  rTr S(Ce) 
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defines the "canonical" Energy-Momentum tensor. This tensor is symmetric and has a close 

relation with the Eshelby Energy-Moment urn tensor bu ([8],[9],[7]). Indeed (see Appendix 

D) components of these tensors in a case of a block-diagonal metric G are related as follows 

VHG| TU = b{IJ) + CeGu(l - S^j). (13) 

Notice also that the spacial part of the tensor T coincide with the symmetrized second 

Piola-Kirchoff tensor 5: 

V-\G\Tu = S(ij), LJ= 1,2,3. 

Equations (9-10) together with the expression (2) for the reference density form the 

closed system of equations for dynamical variables (G[j,Eel). They complemented with 

the initial and boundary conditions, provides one with a closed non-linear boundary value 

problem for deformation and material properties evolution. 

In general system (9-10) seems rather complex especially if the Le dependence Ric(gt) 

or K. is included. Yet some problems can be readily analysed. 

Block-diagonal metric G, sinchronized 4> 

In this case 

Prom this it follows that only derivatives in X1, I = 1,2,3 that appears in 

Lm = F(G) + Q(G)Tr(JC) + p2(£) + rR(g) 

(p2 is a homogeneous function of invariants of tensor K of degree 2) are those in R(gt) 

and that g is equal to the restriction of G to Bt for each t. No derivatives in Goo appears 

anywhere in L. In particular, (OO)-equation is not a dynamical equation but rather the 

condition, similar to the "energy condition" in the gravity, see [10]. 

This equation has the form 

Goo(V9~t(l + rR(gt)) + f(Eel)) + VftP2(9IA9Aj) = 0, (14) 

where y/gl is the volume element of the 3D metric g, p2 is the quadratic part of Lm 

and / is the strain energy. 
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This equation can be used to exclude Goo from the other six equations (10). Alterna- 

tively, it can be used as the additional equation to select convinient variables (see Sec.VI 

below). 

Spacial part of equation (3.6) takes the form 

-    i*L- (agugAB + ßgiAgjß) gAB + qu(g, 9, Goo, Goo) + &u(9t) = S{IJ).      (15) 
2A/—Goo 

Here £~u(g) is the analog of the Einstein tensor of the 3D-metric gt. The difference 

with the usual Einstein tensor is due to the presence of the factor \J—Goo in the term 

y/-\G\Rz{g) of the Lagrangian density ( A/-|G| = \/-GoQ^/gD- 

Term q on the left side depends on the metric coefficients and their first derivatives 

in time. 
Right side of this equation contains no derivatives of metric coefficients. Third term 

in the right side contains only derivatives of Gu, I, J = 1,2,3 by X7, / = 1,2,3 but does 

not contain time derivatives. The first two terms in the left side on the contrary, contain 

only derivatives in time but no space derivatives. This equation is of the second order in 

time. In the case where the term with the constant a dominate one with the constant ß 

(for example, if ß = 0) this equation can be easily transformed to the normal form 

d2Gu  , dG   dG  <92G 

Notice 3 special cases. 

1) Homogeneous media 
In a case of a homogeneous media tensor £u{g) is identically zero. As a result, (15) 

becomes a system of quasilinear ordinary differential equations of the second order for 

G[j. Cauchy problem for this system is correct if a » ß. 

In a case, where Ric(gt) ~ 0, a good approximation of the general system (9-10) can 

be proposed. If the total deformation (f> is approximated by the ground deformation <£ in 

evaluation of EMT TJJ in the right side of (10), the latter becomes decoupled from equi- 

librium equation (9). This allows to study aging equations separately and, after obtaining 

solution G of these equations, substitute them into elastic equilibrium equation (9) and 

solve it as the usual elasticity equation with variable elastic moduli. 

2) Static case 
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If G does not depend on time. K, = 0, p(/C) = 0 and (14) reduces to the "energy 

balance equation" (with scalar curvature Rz(g) plaing the role of metric energy) while (15) 

becomes the second equilibrium equation describing the stress produced by the curvature 

of the metric g and " frozen" into the media. 

3) homogeneous rod (1-D case). 

In a case of a ID media (rod) the curvature of g is identically zero. Then the equations 

(3.6) reduces to a nonlinear dynamical system for Goo and Gn. .In Sec.6 (and in Appendix 

C) an evolution of a homogeneous rod is further discussed. 

^ 
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4. Balance equations. 

As it is usual for a Lagrangian field theory, action of any one-parameter group of 

transformations of the space P x M commuting with the projector to the first factor leads 

to the corresponding balance law (see [21]). In particularly, translations in the "laboratory 

space-time" M lead to the equations of motion (9) (including zeroth one that is trivially 

valid here), rotations in the "laboratory space" lead to the angular momentum balance 

law (conservation law in isotropic case). Respectivelly, translations in the "material space- 

time" P lead to the energy balance law (translations along T axis) and to the material 

momentum balance law (called also "pseudomomentum" [12],[26],[23]), rotations in the 

material space B lead to the " material angular momentum" balance law. 

In the table below we present basic balance laws together with the transformations 

generating them. It is instructive to compare the space and material balance laws. 

Symmetry Laboratory space-time 
(Material independent) 

Material space-time 
(Space independent) 

Homogeneity of 

3D-space 

Linear momentum balance 
law 

(equilibrium equations) 

div(a)=faxt 

Material momentum 
(pseudomomentum) 

balance law 

div(b)=fmat 

Time homogeneity Intrinsic time evolution equation: 

8L/5q>°=0 

Energy balance law: 

3t(gtot=gei+gm+gdis) = 

div(Ptot =pe'+Pm+P dis) 

Isotropy of 3D-space 
Angular momentum balance 
law = h-symmetry of Cauchy 

stress-tensor a 
to = o:I 

Material angular momentum 
balance law = C-symmetry of 

Eshelby stress tensor b 
b:c=c:b 
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Relations between the space and material balance (conservation) laws are given by 

the deformation gradient: 

1      </>!o    ■••    </>V 
W \ n      A Av      / ^o 0      <ft     ...     <f> ,3 

*/ V    0                03/    \^4 

(16) 

Similar to the relativistjc elasticity ([15,],[16]) system of material momentum balance 

laws r\i = 0,7 = 1,2,3 is "equivalent to the elasticity equations i^m = 0 while energy 

balance law 770 = 0 (which is the material law) follows from any of these two systems: 

770 = Yl%iZi Vlfi. This reflects the fact that the deformations we consider are not really 

4-dimensional, and that we restrict the class of deformations to sinchronized ones. 

In terms of the 4D Eshelby tensor b = -Ce6j + §§?■<!>]j, material energy-momentum 

conservation law has the fofm (see Appendix D) 

** - */ - £1 fa ~ £FC? - M?G*B) ■ (17) 

Energy balance law plays special role in our considerations. In the table above £tot 

is the total inner energy density. That equation has the standard form "rate of change of 

inner energy equals to the 3D flow of energy". The total inner energy Stot is composed of 

the usual elastic strain energy 

^£e   nAB e + dGf0
B   '°  ' 

the " metric energy" term 

dCr AB 

~~Lm + ~dGfU>Q 

is a "cohesive" energy i.e.   a part of the total energy density associated with the 

integrity of the media. Reduction of the cohesive energy due to the aging can be related 
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to an increase of brittleness.  This relation is a subject of different article. Third part is 

the "dissipation term" 

E   = "A + QQÄBG,0 
d£-t   nAB 

,0 

related to the slowing or enfastering of the processes due to the aging phenomena. 

Correspondingly we have, in the right side of this balance law the flows, where 

Vel = P[p%Q 

is the usual traction force power, second term 

~ dGA
T
B     '° 

is a "material forces power" (comp. [8],[12],[13]), and the third term wil be interpreted as 

the dissipation flow (due to the heat transfer and other thermodynamical processes). More 

detailed analysis of this balance law and its relation to the entropy production balance as 

well as with the dissipation inequality will be published elsewhere. 

For the external "observer" all three terms represent the total energy while from 

the point of view of "internal observer" this total interior energy comprises three terms 

corresponding to the different processes going in the media. 

If the elastic Lagrangian Le = Le(E
el) depends only on the strain tensor Eel and if 

Lm is function of |G| and )C only while Lt = 0 (for example, in a sinchronized case), energy 

balance law takes the following form (see Apendix D) 

~ I &<* = -£. - Cm + ^^GA
0
B ) = - 2 ^7 (*Wo) • (18) 

9   (ptot__r  _r     ,   d£m ^AB\ _    V^    d 

dT r  -*-*- + QQAB -        /=i 

In the section 5 this balance will be presented in the more specific terms in the case 

of an aging rod. 
In the case of the conventional elasticity intrinsic metric G does not depend on time 

and the energy balance takes its classical form. *^' 
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5. Examples: Aging Rod. 

In that section we consider two examples of an elasticity deformation in a homogeneous 

rod ( with the coordinate X, 0 < X < L and the time variable T) with the intrinsic metric 

G evolving in time. Since we assume the homogeneity of deformation, metric G and the 

elastic strain tensor Eel are functions of time only. 

The rod is subjected to the load F applied to its right end X = L while its left end 

X = 0 is fixed. For F = 0 rod undergone the natural free aging that is described by the 

metric G. If F ^ 0, then elastic deformation is also present. Total deformation cj)tot that 

is seen in experiment consists in two parts. Below we specify both of them. Inelastic, 

irreversible part of deformation is described by the metric G whose evolution depends on 

the load F. Elastic part that manifests itself in the difference between the total and pure 

inelastic ("ground") deformation, goes with the variable Young module E{t) that is also 

specified by the metric G. In an experiment it is the Young module E(t) (or density p(T)) 

and the total deformation etot (or, more exactly, deformation rate etot) that is seen and 

measured. Aging equations define evolution of the metric G and, therefore, evolution of 

the Young module and the rate of deformation. 

Equilibrium equations are trivially satisfied and stress tensor a or deformation <fi 

can be defined from the boundary conditions (see below). Aging equations (10) are now 

ordinary differential equations for the metric G(T) and the energy-momentum tensor 

T is calculated through G and the boundary conditions for deformation or stress. 

We restrict to the case of a block-diagonal metric G = (   °° G   J . Metric Lagrangian 

is taken in the form 

£m = vHGf (F(Goo, \9t\) + Q(Goo, \gt\)TrK + a0Tr(lC2)), (19) 

where functions F, Q of variables Goo, \gt\ and the constant ao will be specified later 

on. 

Elastic Lagrangian has the form 

Ce = V^GVo^TriE*1)2 = v^Gw^l '> (20) 

*?■ 

since p0 = J=$L- Elastic deformation Eel = \ln{Gu^)\ 2). 
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Hook's law has the form 
V-Gööß Ee .   . 

au =  2 *j~' (21) 

For the second Piola-Kirchoff tensor S we have 

Su = G\^\an = G\^\)-'an = ffffi'- (22) 

In the ground state (GS) approximation where we put (j)1 « s/GnX, that is assume 

that the elastic deformation is small in compare to the inelastic one, 

Sn-Clan. (23) 

We also have 

an = [-2p—]e» ~ li^ir1"' ( } 

second formula being true in the GS-approximation (see above). 

Calculating variations of £e by G00, Gn we find (for an arbitrary strain energy /) the 

Energy-momentum tensor density 

2    T-{      0 -KG1 VI 2)SU = -*?Gn4>\) ' W 

As a result, aging equations (9-10) has the form 

6Cm Goo 
6G00 

lG^^~2{G   ^   )Sn- 

(26) 

To calculate variations of the metric Lagrangian and to preform the analysis of the 

aging equations we employ the following notations: x = —Goo, V = G\\ and get 

Cm = f(x,y)+q(x,y)y + a(x,y)y2, (27) 
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where 

As a result, aging equation has the form 

x2{fx + qxy + axV2) = -C e 

-yHfy - q*x + ocyy
2 - 2(ay)) = ~{y<l>\) 

Now we turn to the discussion of the two situations mentioned above. 

(28) 

1. Free aging. 

Consider the situation where the rod of a material is not subjected to any load or 

volume forces, its left end being fixed. There is no any elastic deformation in this case 

(Eel = 0, a = 0) but there may be an inelastic defomation (f)l(T, X) ^ X. This deformation 

is defined from the equation Eel = \ln{g^xC'(</>)) = 0, or C{<f>) = gt (gt is flat). Then, 

clearly, cf> is defined up to an arbitrary time-dependent rigid rotation. If we fix a point in 

the body and a frame in this point and require (j) to preserve it during the deformation, <f> 

is defined uniquelly: 4>\   =Gn, 

4>\X,T) = ^/GMTJX. 

Aging equations are 

i 
±-fy~ avx2 ~ 2aXXy 

qx + 2ax\ + 2aAx ' 

*-A(,,y)- 2/* 

(29) 

qx± sjql - Aaxfx' 

(30) 

where function A is defined by the second equation. 

We take 
/(x, y)=ay + c(x - l)fc, a < 0 

q = qo(x- l)m, m < 1. 

Graphs of typical solutions of this system with GooC^ = 0),Gn(T = 0) > 1 are 

presented in the Appendix C. One sees as the inelastic deformation EXT = \/G\l leads to 

the shrinking of the rod and as the Young module E{t) = E(Q).J~^m diminishes. 
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2. Rod with the fixed boundary. 

In this case we assume that the rod is fixed on the boundary and (due to a homogeneity 

assumption) total deformation is zero: (j)X{T,X) = X,C((j>) = h,Eel = ±ln(Gn). That 

does not mean that there are now stresses in the rod: expansion deformation due to the 

fixed boundary is compensated by the shrinking due to the aging process. As a result, 

intrinsic stresses are developed in the body. 

We have Energy-momentum tensor has, in this case, the form 

f>/x/Hfn(y)) 0 
0" -iy/xf'(-iln(y)). 

For f(Eel) = £Eel 2 we get aging equations in the form 

f /„ - ii^M - ayA2 - 2c*AA 
x = -  

y = \(x,y) = 

qx + 2axA + 2a\x 

2(/x - ^(ln(y))2) (31) 

qx±sJq2-4ax(fx-^(ln(ym 

Graphs of typical solutions of this system with Goo(T = 0),Gn(T = 0) > 1 are 

presented in the Appendix C. One sees as the inelastic deformation Eir = y/Gu leads to 

the shrinking of the rod and as the Young module E(t) = E(0) J ~£m diminishes. 

Comparision of these graphs shaws that during the aging of the rod with the fixed 

boundary, both inelastic deformation and the decrease of the Young module happens more 

slowly and their limit value is closer to the pure elastic case (in the absence of aging). 
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6. Conclusion. 

A variational approach is proposed to formulate constitutive equations for aging me- 

dia. The approach is based on the assumption that the metric tensor of the inner (material) 

space-time geometry together with an elastic strain tensor constitute a complete set of pa- 

rameters of state. This assumption combined with classical Hamilton's principle provides 

a framework for derivation the constitutive and balance equations modeling material be- 

haviour. Selection of a particular form of the Lagrangian, as it is usual in a variational 

formulation, leads to a particular constitutive equations. Thus, for one of the simplest 

linearized case the approach leads to a model of well studied creep behavior of a material 

with fading memory. Analysis of various forms of Lagrangian, the resulting models of 

material behavior, comparison with the experimental data as well as with conventional 

thermodynamic restrictions is the subject of our next work. 

«**' 
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Appendix A. Historical background. 

Development of Elasticity Theory in the end of the last and in the beginning of 

this century was one of several principal factors that ensured the formation of Differen- 

tial Geometry as independent and powerful branch of mathematics. Classical works of 

Levi-Chivita, Ricci on Tensor Analysis and Absolute Calculus are examplery works that 

support strength of the influence of Elasticity Theory. Yet it seemed that later development 

of Continuum Mechanics as well as that of the Material Science influenced predominantly 

development of analytical domains of mathematics rather then that of geometrical do- 

maines. 

During the last twenty years development of the Classical Field Theory that was 

triggered by the studies in Gauge Field Theories and Hamiltonian Mechanics resulted in 

the development of new powerful mathematical methods of analysis and geometry, and, 

simultaniously, revived interest in studying of geometrical • structures that appeares in 

continuum mechanics, astrophysics and solid state physics. 

At the same time there appeared works in Continuum Mechanics where inner, mate- 

rial properties of media are presented by geometrical structures effectivelly reflecting the 

specific properties of solids and liquid media. 

In a series of works A.G.Hermann ([14],[26]), A. Golebowska-Hermann ([12],[13]) and 

their collaborators have studied and clarified the relation between the "laboratory" and 

"material" conservation laws (balance equations) of Elasticity and Thermoelasticity. 

Developments of the structural theory of continuous media pioneered in the works 

by Eshelby ([8,9]), Kondo ([17]) and developed in works by E.Kroner, C.-C.Wang ([32]), 

W.Noll ([25]), G.Mougen, M.Epstein, and others ([22],[7],[23],[1]) demonstrated importance 

of studying of "material connections" that reflects the inhomogeneity of the properties of 

media and the elegance of the "dual" space-material picture in Elasticity Theory. 

Works of B.Carter and H.Quintana (see [2],[3]), G.Maugin on the Relativistic Elastic- 

ity Theory make a great use of specific geometrical structures and relations between such 

structures in 4D-Lorentz space-time of General Relativity and that of 3D-Riemannian space 

of the body (of a star). Further works in this direction made by J.Kijowski and G.Magli 

([15],[16]) support the opinion that relations between the inner geometry of media and its 

dynamics deserves further investigation. 

On the other hand in the works by J.Marsden, J.Simo, T.Hughes and P. Krishnaprasad 

([20],[27],[21],[28]) there was introduced and successfully exploated the notion of "material 

metric" G inner to the media. These authors reformulated the classical non-linear Elasticity 
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Theory as the Lagrangian Theory where the Lagrangian is the functional of two metrics 

on the body - inner metric G and <j)*h induced by a deformation 0 from the Eucledian 

metric of the "laboratory "space. They have developed the covariant approach to the 

balance equations of the Elasticity Theory ([21]) and have studied the relations between 

the "space" and "material" energy-momentum tensors ([27]). 

Our approach is a kind of development of this last point of view together with the 

scheme of Relativistic Elasticity Theory. We are studying the Elasticity Theory for media 

(body B) whose properties are changing with time, but in difference to the usual theories 

of media with memory this dependence manifestates through the " material" metric in 4D- 

"material space-time" P = {R} x B where the first factor stays for inner time parameter 

T. Deformation is presented by an embedding ^ of P to the 4D-" laboratory space-time" 

M of Newton. The last term means that M = ß4 is endowed by a degenerate (3D) metric 

along the space slices ([24]). 

<&■■ 
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Appendix B. Measure of Strain and Elasticity Modulus. 

We fix coordinates t, x\ i = 1,2,3 in the laboratory space-time M = R4 and endow it 

with the 3D Eucledian metric h = ^ dxi 2 which is considered as the covariant 2-tensor 

in M (degenerate metric). 

In the 4D material space-time P = RxBwe consider the coordinates (T = X°, X1, / = 

1,2,3) (that is body B is covered by one coordiante system, for example defined by ini- 

tial coordinates of material points in R3). Denote by BT the slicing of P by the surfaces 

T = const. P is endowed by the metric G of the signature (-, 4-, +, +). Denote by u the 

vector field in P of the time-directed unit (< u,u >= -I) vectors orthogonal to the slices 

BT. Then, in coordinates (T, X1) we have uj = (a, 0,0, 0); u1 = aG/0, / = 0,1,2,3 where 

a = (-G00)-1/2. 

Deformation 0 : P —► M defines the slicing B<j,tt = 4>° _1(0 °f tne cylinder P. We as- 

sume that 3D-surfaces of this slicing are space-like. Denote by u^ the vector field composed 

of future directed unit vectors (< u^.u^ >= —1) orthogonal to the slices. 

In the sinchronized case (0° = T) slicing B«^ coincide with the slicing BT defined 

above and u<j, — u. 

Orthonormal projector to the slices B^t is generated by the covariant 2-tensor ([2],24]) 

7 = G + U0®u0. (B.l) 

Tensor II = G~lj = I + u\ ® u. </, is the projector to the tangent spaces to the slices 

£?0jt. Denote by gt the 3D metric on the slice B^t induced by the tensor 7 ([2],[24]). 

Deformation history <j> : P —+ M defines the 4D Cauchy-Green tensor 

/ h\\2 v^L        \ 
C4O/O = </>*/*= , (B.2) 

where we assume summation by i = 1,2,3 and use standard notations vl = <j>]Q for 

the vector of 4-velocity. Here C(4>) is the conventional 3D Cauchy-Green tensor. 

Define the (1,1) tensor K as 

K[ =G~lC4((j))-u<t><Siu.<i>, &• 

see [15],[7], and the elastic strain tensor as follows 
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Eel • = ]-Uln(K)Ii. (B.3) 

Eel is the tensor in P such that Eelu<t, = 0 = Eel *utj>. We will denote by the same 

letter the restriction of this tensor to the slices B<j,yt- Notice that for a case of a Minkowski 

metric G and of the small sinchronized deformation <p this reduces to the usual definition 

E: = \{c^) - h). 

(c1       n 
rv 1 we 
0     gt ' 

have 

0    0\      „      fO     0 'G^WVW2       G^V'Fl 

^-'5 «)• n = U /,;-tr,*'k-,.-,f,rt     .-. 
00 II " II '-'OO "   A L 

and, finally, 

i.e. Eel coincide with the usual classical expression for the (nonlinear) strain tensor 

in the case of Eucledian metric gt. 

Consider now the sinchronized deformations <j> (so, T = t). If the curvature tensor 

R(gt) = 0 then the 3D-metric gt = 7|st induced by 7 on the slices Bt is a fiat metric and, 

therefore, for all T = t there exists (local, or, in the case of a body B of simple structure, 

global) embedding (deformation) <£(T, ) : BT —► R3 such that £(T) = <j>*h\BT = C($). 

We will call this deformation ground state (GS). This GS-deformation is unique modulo 

the time-dependent eucledian motion in R3. If we put an extra codition for a body to 

have, at any moment T, zero total linear momentum and total angular momentum then 

the ground state is unique up to the constant rigid motion. Notice that for tne ground 

state (and only for it) Eel (</>) = 0. In components (in sincronized case) we have 
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Cu = hirfitftj = Gu - ^H   /, J = 1,2,3. (B.5) 

In the case where G = 77 (Minkowski metric), 7 = /i ground deformation ^ - is just 

the undeformed state of the Classical Elasticity. 

Denote by h 3D- Eucledian metric pullbacked to all the slices BT by the projection 

P —+ B parallel to the T-axes. Then we define at each moment T 

Total deformation Etot((f>) = ln(h-lC{<j))), 

Elastic deformation Eel = ln(g~lC(<j))), 

Inelastic deformation Etr = ln(h~lg). 

These quantities are related by 

Etot=ln(eE"eEir), 

which in the simpliest cases (diagonal tensors, ID case) takes the usual form 

Etot = Eel + £tr (B g) 

To get the "space" form of the strain tensors we apply the transformation induced by the 

deformation 4> at any moment of time T. That is we have (f}*C((j)) = h, 4>*h = ip*h, q = <j)*g 

(= ip*(j)*h for a zero curvature case) for 3D-metric involved and 

Total deformation etot = ln((ip*h)-lh), 

Elastic deformation eel — ln{q~xh), 

Inelastic deformation eir = ln((tp*h)~lq), 

and we have, as for material strain tensors, 

etot =/n(e£ V), 

which in the simpliest cases (diagonal tensors, ID case) takes the usual form 

etot = tel + tir (B 7) 

We take the elastic part of Lagrangian density Ce to be a scalar expression of the strain 

tensor Eel of order less or equal to two with the coefficients that may depend on the 

curvature tensor R(gt) of the 3D metric gt and on the tensor K, of the extrinsic curvature 

of the slicing Bt. As a result 
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Ce = v^po(rr(ei(|G|,/C>Ä((fc))£ei) +Tr(e2(\Gl!C,R(gt))E
elEel), (B.8) 

where ei(\G\,lC,R(gt)), i = 1,2 are elasticity tensors (moduli), depending on the 

intrinsic metric G. Notice also that the volume element and the reference density pQ are 

also functions of G. As a result, elsticity moduli depend on the metric G even in the 

simpliest case of constant isotropic homogeneous coefficients e»: elh = f^j + I^f• ^n 

the examples presented in this paper we restrict to the case of such elsticity tensor. More 

general situation will be discussed elsewhere. 
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Appendix C. Aging Rod. 

In that section we consider three examples of an elasticity deformation in a homoge- 

neous rod ( with the coordinate X, 0 < X < L and the time variable T) with the intrinsic 

metric G evolving in time. Since we assume the homogeneity of deformation, metric G 

and the elastic strain tensor Eel are functions of time only. 

The rod is subjected to the load F applied to its right end X = L while its left end 

X = 0 is fixed. For F - 0 rod undergone the natural free aging that is described by the 

metric G. If F ^ 0, then elastic deformation is also present. Total deformation <j)tot that 

is seen in experiment consists in two parts. Below we specify both of them. Inelastic, 

irreversible part of deformation is described by the metric G whose evolution depends on 

the load F. Elastic part that manifests itself in the difference between the total and pure 

inelastic ("ground") deformation, goes with the variable Young module E(t) that is also 

specified by the metric G (see below). In an experiment it is the Young module E(t) (or 

density p(T)) and the total deformation etot (or, more exactly, deformation rate itot) that 

is seen and measured. Aging equations define evolution of the metric G and, therefore, 

evolution of the Young module and the rate of deformation. 

Equilibrium equations are trivially satisfied and stress tensor a or deformation 4> can 

be defined from the boundary conditions (see below). Aging equations (3.7) are now 

ordinary differential equations for the metric G(T) and the energy-momentum tensor 

T is calculated through G and the boundary conditions for deformation or stress. 

We restrict to the case of a block-diagonal metric G — ( G°° ^ J . Metric Lagrangian 

is taken in the form 

Cm = J-\G\ (F(Goo, \9t\) + Q(Goo, \gt\)TrlC + a0Tr()C2)), (C.l) 

where functions F, Q of variables Goo, \gt\ and the constant ao will be specified later 

on. 

Elastic Lagrangian has the form 

Ce = y/\G\pof(Eel) = y/^G^f(Eel), (C.2) 

since po = y^lf • Here Eel = \ln(Gu<t>\ 2). 
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Elasticity equation (for an arbitrary f(Eel)) has the form 

W = £ (^^> • Jj) . 0 (C.3) 

and in our (homogeneous) case is trivially satisfied. 

We will take 

f{ETl) = ±Tr{E*1? = ffi 2 

and get, 

Ce = ^Üf[fn(GiVi *)]*. (c.4) 

The only component of the first Piola-Kirchoff Tensor is 

Pi = aft=-^rf {E ]=~^~w ( } 

the last expression being true for the strain energy (C.4). 

Since in general aij = J(<ji>)""1/iJS(/»jP/, we have in our case 

'ii = O^r1^1 = P} (ce) 

we get Hook's law in the form 

<m = -jr-/ (E ) = —2—^T- (C-7) 

the last expression being true for the strain energy (C.4). 

For the second Piola-Kirchoff tensor S we have SlJ = Pfc/i/>jfc and 

SAB = GAIGBJS    = GAIGBJP   ip^- (C-8) 

103 



Calculating the only component of Su we get (since an = P/) 

Six = GU\an = Gn(^)-Vu = ffffi2'. (C.9) 

In the ground state (GS) approximation where we put 

, that is assume that the elastic deformation is small in compare to the inelastic 

one, 

Sii^GiVii- (CIO) 

Relation between the material and laboratory strain tensors is taken to be 

tf 
i = EeJ rFJFfl J. (C.12) 

In 2D-case this reduces to 

e? l = E? \ (C.13) 

and, combining that formula with C.l? we get (in the case of Lagrangian C.4) 

2<p,i 2VCrU 

second formula being true in the GS-approximation (see above). 

Calculating variations of £e by G00, Gu we find (for an arbitrary strain energy /) the 

Energy-moment urn tensor density 

As a result, aging equations (3.5-6) has the form 
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1 
6&n 
6G00 

6G 

Goo r 
(C.16) 

til   ;1  2> 
11 ~(Gll0t^n. 

To calculate variations of the metric Lagrangian and to preform the analysis of the 

aging equations we employ the following notations: x = —Goo, V — G\x- 

Using the fact that K\ = ( j^', we rewrite C.l in the form 

Cm = yjxy    F{x, y) + Q(z, y) 
(ln(y))  ,      ,(ln(y)),r 
 7= h a0( 7=—) 

= f(x, y) + q{x, y)y + a(x, y)y2, 

where second equality serve as the definition of functions 

(C.17) 

/ = yfiyF{x,y), q = S&^l, a = aox-^y-W 
va 

Now we calculate 

6Cm 

6G00 

Similarly, we get 

<jCm 2   ö£m 2/r     i ■   i -2\ = Gnn—— = x (fx + qxy + axy ). 
dG00 '00' dx 

(C.18') 

^TT = -y2(fy ~ <lxi + ayy
2 - 2(ay))- 

As a result, aging equation has the form 

(C.18") 

x 
x (/x + qxy + axil ) = 2 Ce 

■y2(fy - <lxx + ayy
2 - 2(ay)) = —£(y<j)\) 

(C.19) 

Now we turn to the discussion of the three situations mentioned above. 
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1. Free aging 

Consider the situation where the rod of a material is not subjected to any load or 

volume forces, its left end being fixed. There is no any elastic deformation in this case 

(Eel = 0, er = 0) but there may be an inelastic defomation 4>l (T, X) ■£ X. This deformation 

is defined from the equation 

or C((j>) = gt (gt is flat). Then, clearly, </> is defined up to an arbitrary time-dependent 

rigid rotation. If we fix a point in the body and a frame in this point and require 0 to 

preserve it during the deformation, $ is defined uniquelly: 

Energy-momentum tensor T is zero and using notations x = —Goo, y = G\\ we get 

for G the system of ODE: 

(/x+^ + «xy2)=0 (c2o) 

(fy - <lxX + ayy
2 - 2(ay)) = 0 

Solving the first equation for y and using it in the second equation we can rewrite this 

system in the form 

' .      fy - ayX2 - 2aXXy 

qx + 2axA -I- 2aXx ' 

y = X{x,y) = i (C.21) 

<7x± yjql - 4ax/x ' 

where function A is defined by the second equation. 

We take 

f(x,y)=ay + c(x-l)k,a<0 

q = qo(x-l)m, m<l. 
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Graphs of typical solutions of this system with GQQ(T — 0),Gn(T = 0) > 1 looks as 

follows 

1.2 - 

1.1  - 

2. Rod with the fixed boundary 

In this case we assume that the rod is fixed on the boundary and (due to a homogeneity 

assumption) total deformation is zero: <j)1 (T,X) = X,C((f>) = h, Eel = jln(Gn). That does 

not mean that there are now stresses in the rod: expansion deformation due to the fixed 

boundary is compensated by the shrinking due to the aging process. As a result, intrinsic 

stresses are developed in the body. 

We have £e = \/—Goof(Eel). From this we get 

an = Pi = vCc^/'(Ee/), Sn = ?Q^f'(E<1) 

and the energy-momentum tensor has the form 

( 
fv£/(-iJn(y)) 

0 
0 

-l^f'{-\ln{y)). 

For f(Eel) = %Eel 2 we get (substituting into (C.19)), 
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(        fy _ E^pl - ÖUA2 - 2aAA, 
x = 

4y* 

y = \(x,y) = 

qx + 2axX + 2aAx 

2(/x - ^(ln(y))2) 
(C.23) 

<7I±V/^-4aI(/I-^(/n(y))2), 

Graphs of typical solutions of this system with GQQ(T = 0), G\\(T = 0) > 1 looks as 

follows 

1.2 - 

1.1 - 

t 

Comparision of these graphs shaws that during the aging of the rod with the fixed 

boundary, both inelastic deformation and the decrease of the Young module happens more 

slowly and their limit value is closer to the pure elastic case (in the absence of aging). 

,J»: 
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Appendix D. Energy-momentum conservation law and the relation between 

the Canonical Energy-Momentum and the Eshelby tensor. 

Energy-momentum conservation law. 

Local material translations XJ —> XJ + 6XJ generate variations of components 4>l 

of deformations and their derivatives. Calculating variation of Lagrangian we get material 

balance equations. Our calculations are similar to the arguments of J.Eshelby (see [8]) 

or [12]). We use the fact that the Lagrangian density has the form £ = \/-G(Lm(G) + 

Le(G,E)), where dependence of metrical and elastic parts of Lagrangian on G and K. is 

not specified so that all dependence on X1 goes through </> and its gradient and through 

G and its derivatives. We get 

6C       dC d^       dC dfj_       8C   dGAB       dC   dGAjB _ 

8XJ     dp dXJ     dtfj dXJ     ÖGAB dXJ      dGA
{
B dXJ 

where 

6C _ dC        d     dC 

6<p~ d&     dX^d&i 

and where variational derivative |§ has the corresponding form. When the equation 

of motion (3.5-3.6) are satisfied we get the following conservation law (J = 0,1,2,3) 

("i-^-ÄS»^)-0-        (a2) 
dx1 

For J = 0 we get the energy conservation law in the form 

r BE"'    a ( .,   acAB\     AI dc t     ac „AB, ,D ,. 
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Notice that in our, quasistatical case, Lagrangian does not depend on <j>$. Expression 

is the total inner energy density which includes elastic energy and the "metric energy" 

which we consider as reflecting the irreversible processes that goes in the system. In the 

right side we have the total flow density T. Notice that from the print of view of outside 

observer there is no division of £ in the elastic and non-elastic part and, as a result, 

conservation laws has their usual form ' r^qv'1 = Flow. On the other hand, from the 

point of view of inside observer energy splits and different terms in the balance of energy 

will have special meaning (see below). 

Introduce the material energy-momentum tensor 

b'j = -Ce6lj + H^. (D.3) 

Tensor b is the 4D-dynamical energy-momentum tensor P*- of J.Eshelby (introduced 

in [9]), known mainly in its 3D-version (see [8], [23],[7] and [22]). It unifies in itself the 

3D-Eshelby tensor 6, the 1-form of quasi-momentum (pseudo-momentum) V (see [26],[23]), 

energy and the energy flow vector. In the (quasistatical) case studied here we do not have 

the kinetic energy term and, as a result, £e does not depend on (j)^. It follows that b° = 0 

for J = 1, 2,3 while 6Q = £ is the energy density. In the case of a block-diagonal metric G 

we have &OB = 0 for all B=l,2,3 and 6oo = — £e- Tensor bu is not symmetric in general. 

Splitting £ in the first and the last term in the right side at (D.2) and regrouping 

terms we get 

**»" "'■' - Wo fa - t§fG"B) - Wo {whrf •      <D-4> 

Notice that in this formula second term on the right is related with the inhomogeneities 

and the evolution of elastic moduli of the media (these moduli depends on the metric G 

through the volume element and the reference density and, maybe, also through tensors 

K. and Ric(gt). At the same time first term is defined by the metrical part of Lagrangian 

density and is related to the changes of the intrinsic metric (comp. with [7]). 
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For J — 0 we get the energy conservation law (using T instead of X°) 

JL(   r  4-^£l^       r     |    d£m rAB       dCe      AB\ _ 
dT [~Le + dtf/>Q "   m + dGtf'0   + dGA

Q
B   '° ) " 

= -E^(^:o + ^- + ^C-) (D.5) 

Here P/ is the first Piola-KirchofF tensor. In the left side of this equation we have the 

time derivative of the total energy £tot of the system. We see that this total energy splits 

into the usual part: elastic energy plus kinetic energy (first two terms), metric energy that 

is defined by Lm (next two terms) and the last term that is related to the time dependence 

of the elastic moduli and can be called the "kinetic energy of elastic moduli". The sum 

in the right side represents the flows present in the scheme - the flow of the Piola-Kirchoff 

stress tensor 
7=3 dC 

and the flows related to the change of the inner metric G. 

If the metric G does not depend on time and, therefore, K, = 0 and if Ric(gt) = 0, we 

get the usual energy conservation law of Elasticity Theory (see [HM], Chapter 5,Sec.5): 

If the metric G does not depend on time and, therefore, /C = 0 but Ric(g) ^ 0, the 

energy conservation law will contain a term representing "energy of frozen defects". 

Notice that energy conservation law appears here as the "material" and not as the 

"space" law. 

In the case of a block diagonal metric G and homogeneous media we have the extrinsic 

curvature in the form 

<-> = (°o  i<U 
and, as a result no flow terms except usual Piola-Kirchoff flow appear in the right side in 

(D.5): 
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w{^-^^fGA^i§f^B) =-|W>.<- (D.6) 

Now we would like to specialize the energy conservation law in the case of the most 

simple elastic Lagrangian function Le = Le{E)). In this case last term in the left side 

vanishes and if, in addition, we take 

Lm = F(G) + Q(G)TrlC + aTr()C2) + /3(Tr/C)2 

we get 

7=3 

A (s* - [F(G) - aTr()C2) - ß(TrJC)2]y^G) = - £(^!o),/ (D.7) 

Consider an example of the 2D-metric 

flu Here u0 = V^G^, JC\ = ^f^ ° ■ We also put ß = 0 and denote tir = y/G~^, E = y^g 

(See Appendix B). We have 

Expression of the metric part of energy can be rewritten as follows 

a    //i    ,^     s    \2x f—Fi a        //I    fy-i     \    \2 „      t~ri       4a/;ir\2 V=G(F(G) + -^-((/nCdO.o)2) = eov^G - -^=((KGn),o)2 = e0V^G - -~;(n, 
Ooo / -Goo ti 

V   G,i 

so that finally energy balance law takes the form 
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—-  = ~^-(PiVo)- (D.9) 

Notice that it is natural to have eo < 0 (see above or Appendix B, where the condition 

was put, notice also that a > 0). As a result the first term in the expression for the metric 

energy, corresponding to the ground energy reserve, shows that as \J—G grows, energy S 

decreases. Second term contains derivative E so (as it is natural) that when E(t) grows, 

(elastic) energy grows too and vice versa. This term describes change of elastic energy- 

due to the change of elastic properties of material. Finally we interpret the last term 

(containing second time derivative of etr) as the energy exchange due to the irreversible 

deformation. 

Canonical Energy-Momentum Tensor, Piola-Kirchoff Tensor and Eshelby 

tensor 

Now we would like to discuss the relation between the Eshelby Stress-Energy-Momentum 

Tensor b that appears in the energy-momentum balance law (D.4) and the canonical 

Energy-Momentum tensor defined by the relation T   g     = -jft of Lagrangian field the- 

ory with the 4D-metric G.  Tensor T is symmetrical by definition and, in the case of a 

block-diagonal metric G, has the form 

( 

Too 0 
0     77J,/,J = 1,2,3 

On the other hand tensor b is not symmetrical and its 10 terms are non-zero even for a 

block-diagonal metric. Below we will get comparision of 00 and IJ, /, J = 1,2,3 terms of 

these tensors. 

Here we consider the Lagrangian of the form 

CK = LesrG = pQf{Eel,K)y/=G= y/-G00f(Eel,lC) (D.10) 

where 

EeJ J = Ink!n(Q)£n$, Qlj = G'ACWAJ + U'UJ 
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(see Appendix B). We present the strain energy function as the function of 3D-tensor 

Q3 = riQn instead of Eel: f(Eel,lC) = h(Qz,K) and we will calculate derivatives and 

variations using this representation. Explicit dependence of elastic lagrangian on G goes 

through the dependence of the factor \/-GQQ and through possible dependence of h (or /) 

on K,. 

Calculations below are done for the BD-metrics only. In this case 

Qij = \GIACAJA,I,J= 1,2,3 

As the first step we recall the calculation of the first and the second Piola-Kirchoff 

tensors. We have 

Pl = W = \wB
GAK{hiiFJB8'K + ^^ = ätb(/lijF^ + WM, (D.11) 

since 

QCD = QDGIC 

and 

77-4   = -T7\ {0DUAc) = ^r ^AC- 
8Q%      OQCD OQCB 

Prom this it follows that 

^£e  „AK ^£e -GA" = 
dQi öQBK 

Recall the definition of SAB as 

=wB ■ GAK^C-+*i°^=wt ■ GAKCKJ+m ■ GA'CBJ' 
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from which it follows that 

S" = TOT • GAKCKJGBI + ^L . CBJ. (D.12) 
dQi dQl

B 

Now using the the fact that Qu = C((j))u is symmetric and that 

dLP        dL€ je uj-ie 
GAI- 

dQlj     dQAJ 

As a result we rewrite the first term in the right side of the last formula as 

dCc   _        -^ _     _ dCc   „    „ dCc  „    „ dCc 
■GCA ■ GAK

CKJGBI = ^^-GBICKJ = -^-GQICKJ = ^CKJ, 
dQcB     " AJ   öi     öQ/<ß   

Di   ,w     ÖQBK ÖQfc 

and, as a result two terms in the expression for S[j coincide and we have 

5" = 2T£TCKJ- (°-13) 
Now we calculate the Eshelby tensor b: 

b?j = -£a8l
J + P{Fij = -Ce6

Ij + Slj 

Covariant tensor b is 

bu = GIsbSj = -CeGu + Su (D.14) 

Taking symmetrical part of all tensors here we get 

b{Ij) = -CeGIj + SiIJ), (D.15) 

where we denoted by Ayj) = \{AJJ 4- AJI) the symmetric part of a covarlaht tensor 

A. 
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Canonical Energy-Momentum tensor for the Lagrangian (D.10) is (7, J = 1,2,3) 

A -G^        6Ce        ÖCe        ,   6Ce 6Q% 
'Tu     8GlJ     6GIJexP

+ 6Q£6GIJ 

6Ce 6Ce fzAri        ,   xA + 7^(SfCjB + 6JCIB). (D.16) 
8GiJexP     8Q% 

Comparing (D.13) and (D.16) we get {I, J = 1,2,3): 

GTu = i^7      +l-S(I^ = -^h      +^ + ^C/J. (D.17) 

Consider the case where Le does not depend on /C and all the explicit dependence on 

G is through Goo- Calculate the term 

KU 6GiJezP 

of the CEM-tensor. We have 

Ce = Po^Gf(Eel) = y/-Gmf{Ea) 

Using 
IJ 8GAB = -6GtJ   GIAGJB 

we get 

Sy/-Goo 1.    _   N_i ^Goo 1   /   „    GIQGJQ 
-SGiT-= ~2{~Goo)     ^ = "2V"Go°~Go7"' 

and the input into the tensor ku from the term S(X)^/-GooLe is CeZu,  Zu = 
1 GmG .;o 
2 Goo     ' 

For a case of a block-diagonal metric G where GQI = 0,7 = 1,2,3, tensor Z^ has only 

00 non-zero term. As a result fc has the form (       n    "    n  ) * 
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As a result (D.17) takes (in the BD case without dependence of K) the form (/, J = 

1,2,3): 

V^C Tu = b{IJ) + CeGu(l - m). (D.18) 

This gives a relation between the Eshelby tensor and the Canonical Energy-Momentum 

tensor (CEM-tensor). 

We see that symmetrical part of the Eshelby tensor (I,J = 1,2,3) is that (non- 

volume) part of energy-momentum tensor where dependence on the metric G goes through 

the elastic moduli (those are hidden in the definition of strain tensor E). The term fc is 

"flow term" in that it depends on the "space-time" (mixed) part of the metric G and has 

only 00-component for the block-diagonal metric G (Robertson-Walker, for example). 

If Le depends on G also through /C, then the expression for tensor k becomes more 

complex. 
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